mirror of
https://github.com/explosion/spaCy.git
synced 2024-11-11 04:08:09 +03:00
a4b32b9552
* Handle missing reference values in scorer Handle missing values in reference doc during scoring where it is possible to detect an unset state for the attribute. If no reference docs contain annotation, `None` is returned instead of a score. `spacy evaluate` displays `-` for missing scores and the missing scores are saved as `None`/`null` in the metrics. Attributes without unset states: * `token.head`: relies on `token.dep` to recognize unset values * `doc.cats`: unable to handle missing annotation Additional changes: * add optional `has_annotation` check to `score_scans` to replace `doc.sents` hack * update `score_token_attr_per_feat` to handle missing and empty morph representations * fix bug in `Doc.has_annotation` for normalization of `IS_SENT_START` vs. `SENT_START` * Fix import * Update return types
170 lines
6.0 KiB
Cython
170 lines
6.0 KiB
Cython
# cython: infer_types=True, profile=True, binding=True
|
|
from itertools import islice
|
|
|
|
import srsly
|
|
from thinc.api import Model, SequenceCategoricalCrossentropy, Config
|
|
|
|
from ..tokens.doc cimport Doc
|
|
|
|
from .tagger import Tagger
|
|
from ..language import Language
|
|
from ..errors import Errors
|
|
from ..scorer import Scorer
|
|
from ..training import validate_examples, validate_get_examples
|
|
from .. import util
|
|
|
|
|
|
default_model_config = """
|
|
[model]
|
|
@architectures = "spacy.Tagger.v1"
|
|
|
|
[model.tok2vec]
|
|
@architectures = "spacy.HashEmbedCNN.v1"
|
|
pretrained_vectors = null
|
|
width = 12
|
|
depth = 1
|
|
embed_size = 2000
|
|
window_size = 1
|
|
maxout_pieces = 2
|
|
subword_features = true
|
|
"""
|
|
DEFAULT_SENTER_MODEL = Config().from_str(default_model_config)["model"]
|
|
|
|
|
|
@Language.factory(
|
|
"senter",
|
|
assigns=["token.is_sent_start"],
|
|
default_config={"model": DEFAULT_SENTER_MODEL},
|
|
default_score_weights={"sents_f": 1.0, "sents_p": 0.0, "sents_r": 0.0},
|
|
)
|
|
def make_senter(nlp: Language, name: str, model: Model):
|
|
return SentenceRecognizer(nlp.vocab, model, name)
|
|
|
|
|
|
class SentenceRecognizer(Tagger):
|
|
"""Pipeline component for sentence segmentation.
|
|
|
|
DOCS: https://nightly.spacy.io/api/sentencerecognizer
|
|
"""
|
|
def __init__(self, vocab, model, name="senter"):
|
|
"""Initialize a sentence recognizer.
|
|
|
|
vocab (Vocab): The shared vocabulary.
|
|
model (thinc.api.Model): The Thinc Model powering the pipeline component.
|
|
name (str): The component instance name, used to add entries to the
|
|
losses during training.
|
|
|
|
DOCS: https://nightly.spacy.io/api/sentencerecognizer#init
|
|
"""
|
|
self.vocab = vocab
|
|
self.model = model
|
|
self.name = name
|
|
self._rehearsal_model = None
|
|
self.cfg = {}
|
|
|
|
@property
|
|
def labels(self):
|
|
"""RETURNS (Tuple[str]): The labels."""
|
|
# labels are numbered by index internally, so this matches GoldParse
|
|
# and Example where the sentence-initial tag is 1 and other positions
|
|
# are 0
|
|
return tuple(["I", "S"])
|
|
|
|
@property
|
|
def label_data(self):
|
|
return None
|
|
|
|
def set_annotations(self, docs, batch_tag_ids):
|
|
"""Modify a batch of documents, using pre-computed scores.
|
|
|
|
docs (Iterable[Doc]): The documents to modify.
|
|
batch_tag_ids: The IDs to set, produced by SentenceRecognizer.predict.
|
|
|
|
DOCS: https://nightly.spacy.io/api/sentencerecognizer#set_annotations
|
|
"""
|
|
if isinstance(docs, Doc):
|
|
docs = [docs]
|
|
cdef Doc doc
|
|
for i, doc in enumerate(docs):
|
|
doc_tag_ids = batch_tag_ids[i]
|
|
if hasattr(doc_tag_ids, "get"):
|
|
doc_tag_ids = doc_tag_ids.get()
|
|
for j, tag_id in enumerate(doc_tag_ids):
|
|
# Don't clobber existing sentence boundaries
|
|
if doc.c[j].sent_start == 0:
|
|
if tag_id == 1:
|
|
doc.c[j].sent_start = 1
|
|
else:
|
|
doc.c[j].sent_start = -1
|
|
|
|
def get_loss(self, examples, scores):
|
|
"""Find the loss and gradient of loss for the batch of documents and
|
|
their predicted scores.
|
|
|
|
examples (Iterable[Examples]): The batch of examples.
|
|
scores: Scores representing the model's predictions.
|
|
RETURNS (Tuple[float, float]): The loss and the gradient.
|
|
|
|
DOCS: https://nightly.spacy.io/api/sentencerecognizer#get_loss
|
|
"""
|
|
validate_examples(examples, "SentenceRecognizer.get_loss")
|
|
labels = self.labels
|
|
loss_func = SequenceCategoricalCrossentropy(names=labels, normalize=False)
|
|
truths = []
|
|
for eg in examples:
|
|
eg_truth = []
|
|
for x in eg.get_aligned("SENT_START"):
|
|
if x is None:
|
|
eg_truth.append(None)
|
|
elif x == 1:
|
|
eg_truth.append(labels[1])
|
|
else:
|
|
# anything other than 1: 0, -1, -1 as uint64
|
|
eg_truth.append(labels[0])
|
|
truths.append(eg_truth)
|
|
d_scores, loss = loss_func(scores, truths)
|
|
if self.model.ops.xp.isnan(loss):
|
|
raise ValueError(Errors.E910.format(name=self.name))
|
|
return float(loss), d_scores
|
|
|
|
def initialize(self, get_examples, *, nlp=None):
|
|
"""Initialize the pipe for training, using a representative set
|
|
of data examples.
|
|
|
|
get_examples (Callable[[], Iterable[Example]]): Function that
|
|
returns a representative sample of gold-standard Example objects.
|
|
nlp (Language): The current nlp object the component is part of.
|
|
|
|
DOCS: https://nightly.spacy.io/api/sentencerecognizer#initialize
|
|
"""
|
|
validate_get_examples(get_examples, "SentenceRecognizer.initialize")
|
|
doc_sample = []
|
|
label_sample = []
|
|
assert self.labels, Errors.E924.format(name=self.name)
|
|
for example in islice(get_examples(), 10):
|
|
doc_sample.append(example.x)
|
|
gold_tags = example.get_aligned("SENT_START")
|
|
gold_array = [[1.0 if tag == gold_tag else 0.0 for tag in self.labels] for gold_tag in gold_tags]
|
|
label_sample.append(self.model.ops.asarray(gold_array, dtype="float32"))
|
|
assert len(doc_sample) > 0, Errors.E923.format(name=self.name)
|
|
assert len(label_sample) > 0, Errors.E923.format(name=self.name)
|
|
self.model.initialize(X=doc_sample, Y=label_sample)
|
|
|
|
def add_label(self, label, values=None):
|
|
raise NotImplementedError
|
|
|
|
def score(self, examples, **kwargs):
|
|
"""Score a batch of examples.
|
|
|
|
examples (Iterable[Example]): The examples to score.
|
|
RETURNS (Dict[str, Any]): The scores, produced by Scorer.score_spans.
|
|
DOCS: https://nightly.spacy.io/api/sentencerecognizer#score
|
|
"""
|
|
def has_sents(doc):
|
|
return doc.has_annotation("SENT_START")
|
|
|
|
validate_examples(examples, "SentenceRecognizer.score")
|
|
results = Scorer.score_spans(examples, "sents", has_annotation=has_sents, **kwargs)
|
|
del results["sents_per_type"]
|
|
return results
|