mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-26 01:04:34 +03:00
e82306937e
* Add back pre-2.2.2 tok2vec * Add simple tok2vec tests * Add simple tok2vec tests * Reformat * Fix CharacterEmbed in new tok2vec * Fix legacy tok2vec * Resolve circular imports * Fix test for Python 2
132 lines
4.6 KiB
Python
132 lines
4.6 KiB
Python
# coding: utf8
|
|
from __future__ import unicode_literals
|
|
from thinc.v2v import Model, Maxout
|
|
from thinc.i2v import HashEmbed, StaticVectors
|
|
from thinc.t2t import ExtractWindow
|
|
from thinc.misc import Residual
|
|
from thinc.misc import LayerNorm as LN
|
|
from thinc.misc import FeatureExtracter
|
|
from thinc.api import layerize, chain, clone, concatenate, with_flatten
|
|
from thinc.api import uniqued, wrap, noop
|
|
|
|
from ..attrs import ID, ORTH, NORM, PREFIX, SUFFIX, SHAPE
|
|
|
|
|
|
def Tok2Vec(width, embed_size, **kwargs):
|
|
# Circular imports :(
|
|
from .._ml import CharacterEmbed
|
|
from .._ml import PyTorchBiLSTM
|
|
|
|
pretrained_vectors = kwargs.get("pretrained_vectors", None)
|
|
cnn_maxout_pieces = kwargs.get("cnn_maxout_pieces", 3)
|
|
subword_features = kwargs.get("subword_features", True)
|
|
char_embed = kwargs.get("char_embed", False)
|
|
if char_embed:
|
|
subword_features = False
|
|
conv_depth = kwargs.get("conv_depth", 4)
|
|
bilstm_depth = kwargs.get("bilstm_depth", 0)
|
|
cols = [ID, NORM, PREFIX, SUFFIX, SHAPE, ORTH]
|
|
with Model.define_operators({">>": chain, "|": concatenate, "**": clone}):
|
|
norm = HashEmbed(width, embed_size, column=cols.index(NORM), name="embed_norm")
|
|
if subword_features:
|
|
prefix = HashEmbed(
|
|
width, embed_size // 2, column=cols.index(PREFIX), name="embed_prefix"
|
|
)
|
|
suffix = HashEmbed(
|
|
width, embed_size // 2, column=cols.index(SUFFIX), name="embed_suffix"
|
|
)
|
|
shape = HashEmbed(
|
|
width, embed_size // 2, column=cols.index(SHAPE), name="embed_shape"
|
|
)
|
|
else:
|
|
prefix, suffix, shape = (None, None, None)
|
|
if pretrained_vectors is not None:
|
|
glove = StaticVectors(pretrained_vectors, width, column=cols.index(ID))
|
|
|
|
if subword_features:
|
|
embed = uniqued(
|
|
(glove | norm | prefix | suffix | shape)
|
|
>> LN(Maxout(width, width * 5, pieces=3)),
|
|
column=cols.index(ORTH),
|
|
)
|
|
else:
|
|
embed = uniqued(
|
|
(glove | norm) >> LN(Maxout(width, width * 2, pieces=3)),
|
|
column=cols.index(ORTH),
|
|
)
|
|
elif subword_features:
|
|
embed = uniqued(
|
|
(norm | prefix | suffix | shape)
|
|
>> LN(Maxout(width, width * 4, pieces=3)),
|
|
column=cols.index(ORTH),
|
|
)
|
|
elif char_embed:
|
|
embed = concatenate_lists(
|
|
CharacterEmbed(nM=64, nC=8),
|
|
FeatureExtracter(cols) >> with_flatten(norm),
|
|
)
|
|
reduce_dimensions = LN(
|
|
Maxout(width, 64 * 8 + width, pieces=cnn_maxout_pieces)
|
|
)
|
|
else:
|
|
embed = norm
|
|
|
|
convolution = Residual(
|
|
ExtractWindow(nW=1)
|
|
>> LN(Maxout(width, width * 3, pieces=cnn_maxout_pieces))
|
|
)
|
|
if char_embed:
|
|
tok2vec = embed >> with_flatten(
|
|
reduce_dimensions >> convolution ** conv_depth, pad=conv_depth
|
|
)
|
|
else:
|
|
tok2vec = FeatureExtracter(cols) >> with_flatten(
|
|
embed >> convolution ** conv_depth, pad=conv_depth
|
|
)
|
|
|
|
if bilstm_depth >= 1:
|
|
tok2vec = tok2vec >> PyTorchBiLSTM(width, width, bilstm_depth)
|
|
# Work around thinc API limitations :(. TODO: Revise in Thinc 7
|
|
tok2vec.nO = width
|
|
tok2vec.embed = embed
|
|
return tok2vec
|
|
|
|
|
|
@layerize
|
|
def flatten(seqs, drop=0.0):
|
|
ops = Model.ops
|
|
lengths = ops.asarray([len(seq) for seq in seqs], dtype="i")
|
|
|
|
def finish_update(d_X, sgd=None):
|
|
return ops.unflatten(d_X, lengths, pad=0)
|
|
|
|
X = ops.flatten(seqs, pad=0)
|
|
return X, finish_update
|
|
|
|
|
|
def concatenate_lists(*layers, **kwargs): # pragma: no cover
|
|
"""Compose two or more models `f`, `g`, etc, such that their outputs are
|
|
concatenated, i.e. `concatenate(f, g)(x)` computes `hstack(f(x), g(x))`
|
|
"""
|
|
if not layers:
|
|
return noop()
|
|
drop_factor = kwargs.get("drop_factor", 1.0)
|
|
ops = layers[0].ops
|
|
layers = [chain(layer, flatten) for layer in layers]
|
|
concat = concatenate(*layers)
|
|
|
|
def concatenate_lists_fwd(Xs, drop=0.0):
|
|
if drop is not None:
|
|
drop *= drop_factor
|
|
lengths = ops.asarray([len(X) for X in Xs], dtype="i")
|
|
flat_y, bp_flat_y = concat.begin_update(Xs, drop=drop)
|
|
ys = ops.unflatten(flat_y, lengths)
|
|
|
|
def concatenate_lists_bwd(d_ys, sgd=None):
|
|
return bp_flat_y(ops.flatten(d_ys), sgd=sgd)
|
|
|
|
return ys, concatenate_lists_bwd
|
|
|
|
model = wrap(concatenate_lists_fwd, concat)
|
|
return model
|