spaCy/spacy/tests/parser/test_ner.py
Adriane Boyd c4112a1da3
Require that all SpanGroup spans are from the current doc (#12569)
* Require that all SpanGroup spans are from the current doc

The restriction on only adding spans from the current doc were already
implemented for all operations except for `SpanGroup.__init__`.

Initialize copied spans for `SpanGroup.copy` with `Doc.char_span` in
order to validate the character offsets and to make it possible to copy
spans between documents with differing tokenization. Currently there is
no validation that the document texts are identical, but the span char
offsets must be valid spans in the target doc, which prevents you from
ending up with completely invalid spans.

* Undo change in test_beam_overfitting_IO
2023-06-01 19:19:17 +02:00

829 lines
28 KiB
Python

import random
import pytest
from numpy.testing import assert_equal
from spacy.attrs import ENT_IOB
from spacy import util, registry
from spacy.lang.en import English
from spacy.lang.it import Italian
from spacy.language import Language
from spacy.lookups import Lookups
from spacy.pipeline import EntityRecognizer
from spacy.pipeline.ner import DEFAULT_NER_MODEL
from spacy.pipeline._parser_internals.ner import BiluoPushDown
from spacy.training import Example, iob_to_biluo, split_bilu_label
from spacy.tokens import Doc, Span
from spacy.vocab import Vocab
import logging
from ..util import make_tempdir
TRAIN_DATA = [
("Who is Shaka Khan?", {"entities": [(7, 17, "PERSON")]}),
("I like London and Berlin.", {"entities": [(7, 13, "LOC"), (18, 24, "LOC")]}),
]
@pytest.fixture
def neg_key():
return "non_entities"
@pytest.fixture
def vocab():
return Vocab()
@pytest.fixture
def doc(vocab):
return Doc(vocab, words=["Casey", "went", "to", "New", "York", "."])
@pytest.fixture
def entity_annots(doc):
casey = doc[0:1]
ny = doc[3:5]
return [
(casey.start_char, casey.end_char, "PERSON"),
(ny.start_char, ny.end_char, "GPE"),
]
@pytest.fixture
def entity_types(entity_annots):
return sorted(set([label for (s, e, label) in entity_annots]))
@pytest.fixture
def tsys(vocab, entity_types):
actions = BiluoPushDown.get_actions(entity_types=entity_types)
return BiluoPushDown(vocab.strings, actions)
@pytest.mark.parametrize("label", ["U-JOB-NAME"])
@pytest.mark.issue(1967)
def test_issue1967(label):
nlp = Language()
config = {}
ner = nlp.create_pipe("ner", config=config)
example = Example.from_dict(
Doc(ner.vocab, words=["word"]),
{
"ids": [0],
"words": ["word"],
"tags": ["tag"],
"heads": [0],
"deps": ["dep"],
"entities": [label],
},
)
assert "JOB-NAME" in ner.moves.get_actions(examples=[example])[1]
@pytest.mark.issue(2179)
def test_issue2179():
"""Test that spurious 'extra_labels' aren't created when initializing NER."""
nlp = Italian()
ner = nlp.add_pipe("ner")
ner.add_label("CITIZENSHIP")
nlp.initialize()
nlp2 = Italian()
nlp2.add_pipe("ner")
assert len(nlp2.get_pipe("ner").labels) == 0
model = nlp2.get_pipe("ner").model
model.attrs["resize_output"](model, nlp.get_pipe("ner").moves.n_moves)
nlp2.from_bytes(nlp.to_bytes())
assert "extra_labels" not in nlp2.get_pipe("ner").cfg
assert nlp2.get_pipe("ner").labels == ("CITIZENSHIP",)
@pytest.mark.issue(2385)
def test_issue2385():
"""Test that IOB tags are correctly converted to BILUO tags."""
# fix bug in labels with a 'b' character
tags1 = ("B-BRAWLER", "I-BRAWLER", "I-BRAWLER")
assert iob_to_biluo(tags1) == ["B-BRAWLER", "I-BRAWLER", "L-BRAWLER"]
# maintain support for iob1 format
tags2 = ("I-ORG", "I-ORG", "B-ORG")
assert iob_to_biluo(tags2) == ["B-ORG", "L-ORG", "U-ORG"]
# maintain support for iob2 format
tags3 = ("B-PERSON", "I-PERSON", "B-PERSON")
assert iob_to_biluo(tags3) == ["B-PERSON", "L-PERSON", "U-PERSON"]
# ensure it works with hyphens in the name
tags4 = ("B-MULTI-PERSON", "I-MULTI-PERSON", "B-MULTI-PERSON")
assert iob_to_biluo(tags4) == ["B-MULTI-PERSON", "L-MULTI-PERSON", "U-MULTI-PERSON"]
@pytest.mark.issue(2800)
def test_issue2800():
"""Test issue that arises when too many labels are added to NER model.
Used to cause segfault.
"""
nlp = English()
train_data = []
train_data.extend(
[Example.from_dict(nlp.make_doc("One sentence"), {"entities": []})]
)
entity_types = [str(i) for i in range(1000)]
ner = nlp.add_pipe("ner")
for entity_type in list(entity_types):
ner.add_label(entity_type)
optimizer = nlp.initialize()
for i in range(20):
losses = {}
random.shuffle(train_data)
for example in train_data:
nlp.update([example], sgd=optimizer, losses=losses, drop=0.5)
@pytest.mark.issue(3209)
def test_issue3209():
"""Test issue that occurred in spaCy nightly where NER labels were being
mapped to classes incorrectly after loading the model, when the labels
were added using ner.add_label().
"""
nlp = English()
ner = nlp.add_pipe("ner")
ner.add_label("ANIMAL")
nlp.initialize()
move_names = ["O", "B-ANIMAL", "I-ANIMAL", "L-ANIMAL", "U-ANIMAL"]
assert ner.move_names == move_names
nlp2 = English()
ner2 = nlp2.add_pipe("ner")
model = ner2.model
model.attrs["resize_output"](model, ner.moves.n_moves)
nlp2.from_bytes(nlp.to_bytes())
assert ner2.move_names == move_names
def test_labels_from_BILUO():
"""Test that labels are inferred correctly when there's a - in label."""
nlp = English()
ner = nlp.add_pipe("ner")
ner.add_label("LARGE-ANIMAL")
nlp.initialize()
move_names = [
"O",
"B-LARGE-ANIMAL",
"I-LARGE-ANIMAL",
"L-LARGE-ANIMAL",
"U-LARGE-ANIMAL",
]
labels = {"LARGE-ANIMAL"}
assert ner.move_names == move_names
assert set(ner.labels) == labels
@pytest.mark.issue(4267)
def test_issue4267():
"""Test that running an entity_ruler after ner gives consistent results"""
nlp = English()
ner = nlp.add_pipe("ner")
ner.add_label("PEOPLE")
nlp.initialize()
assert "ner" in nlp.pipe_names
# assert that we have correct IOB annotations
doc1 = nlp("hi")
assert doc1.has_annotation("ENT_IOB")
for token in doc1:
assert token.ent_iob == 2
# add entity ruler and run again
patterns = [{"label": "SOFTWARE", "pattern": "spacy"}]
ruler = nlp.add_pipe("entity_ruler")
ruler.add_patterns(patterns)
assert "entity_ruler" in nlp.pipe_names
assert "ner" in nlp.pipe_names
# assert that we still have correct IOB annotations
doc2 = nlp("hi")
assert doc2.has_annotation("ENT_IOB")
for token in doc2:
assert token.ent_iob == 2
@pytest.mark.issue(4313)
def test_issue4313():
"""This should not crash or exit with some strange error code"""
beam_width = 16
beam_density = 0.0001
nlp = English()
config = {
"beam_width": beam_width,
"beam_density": beam_density,
}
ner = nlp.add_pipe("beam_ner", config=config)
ner.add_label("SOME_LABEL")
nlp.initialize()
# add a new label to the doc
doc = nlp("What do you think about Apple ?")
assert len(ner.labels) == 1
assert "SOME_LABEL" in ner.labels
apple_ent = Span(doc, 5, 6, label="MY_ORG")
doc.ents = list(doc.ents) + [apple_ent]
# ensure the beam_parse still works with the new label
docs = [doc]
ner.beam_parse(docs, drop=0.0, beam_width=beam_width, beam_density=beam_density)
assert len(ner.labels) == 2
assert "MY_ORG" in ner.labels
def test_get_oracle_moves(tsys, doc, entity_annots):
example = Example.from_dict(doc, {"entities": entity_annots})
act_classes = tsys.get_oracle_sequence(example, _debug=False)
names = [tsys.get_class_name(act) for act in act_classes]
assert names == ["U-PERSON", "O", "O", "B-GPE", "L-GPE", "O"]
def test_negative_samples_two_word_input(tsys, vocab, neg_key):
"""Test that we don't get stuck in a two word input when we have a negative
span. This could happen if we don't have the right check on the B action.
"""
tsys.cfg["neg_key"] = neg_key
doc = Doc(vocab, words=["A", "B"])
entity_annots = [None, None]
example = Example.from_dict(doc, {"entities": entity_annots})
# These mean that the oracle sequence shouldn't have O for the first
# word, and it shouldn't analyse it as B-PERSON, L-PERSON
example.y.spans[neg_key] = [
Span(example.y, 0, 1, label="O"),
Span(example.y, 0, 2, label="PERSON"),
]
act_classes = tsys.get_oracle_sequence(example)
names = [tsys.get_class_name(act) for act in act_classes]
assert names
assert names[0] != "O"
assert names[0] != "B-PERSON"
assert names[1] != "L-PERSON"
def test_negative_samples_three_word_input(tsys, vocab, neg_key):
"""Test that we exclude a 2-word entity correctly using a negative example."""
tsys.cfg["neg_key"] = neg_key
doc = Doc(vocab, words=["A", "B", "C"])
entity_annots = [None, None, None]
example = Example.from_dict(doc, {"entities": entity_annots})
# These mean that the oracle sequence shouldn't have O for the first
# word, and it shouldn't analyse it as B-PERSON, L-PERSON
example.y.spans[neg_key] = [
Span(example.y, 0, 1, label="O"),
Span(example.y, 0, 2, label="PERSON"),
]
act_classes = tsys.get_oracle_sequence(example)
names = [tsys.get_class_name(act) for act in act_classes]
assert names
assert names[0] != "O"
assert names[1] != "B-PERSON"
def test_negative_samples_U_entity(tsys, vocab, neg_key):
"""Test that we exclude a 2-word entity correctly using a negative example."""
tsys.cfg["neg_key"] = neg_key
doc = Doc(vocab, words=["A"])
entity_annots = [None]
example = Example.from_dict(doc, {"entities": entity_annots})
# These mean that the oracle sequence shouldn't have O for the first
# word, and it shouldn't analyse it as B-PERSON, L-PERSON
example.y.spans[neg_key] = [
Span(example.y, 0, 1, label="O"),
Span(example.y, 0, 1, label="PERSON"),
]
act_classes = tsys.get_oracle_sequence(example)
names = [tsys.get_class_name(act) for act in act_classes]
assert names
assert names[0] != "O"
assert names[0] != "U-PERSON"
def test_negative_sample_key_is_in_config(vocab, entity_types):
actions = BiluoPushDown.get_actions(entity_types=entity_types)
tsys = BiluoPushDown(vocab.strings, actions, incorrect_spans_key="non_entities")
assert tsys.cfg["neg_key"] == "non_entities"
# We can't easily represent this on a Doc object. Not sure what the best solution
# would be, but I don't think it's an important use case?
@pytest.mark.skip(reason="No longer supported")
def test_oracle_moves_missing_B(en_vocab):
words = ["B", "52", "Bomber"]
biluo_tags = [None, None, "L-PRODUCT"]
doc = Doc(en_vocab, words=words)
example = Example.from_dict(doc, {"words": words, "entities": biluo_tags})
moves = BiluoPushDown(en_vocab.strings)
move_types = ("M", "B", "I", "L", "U", "O")
for tag in biluo_tags:
if tag is None:
continue
elif tag == "O":
moves.add_action(move_types.index("O"), "")
else:
action, label = split_bilu_label(tag)
moves.add_action(move_types.index("B"), label)
moves.add_action(move_types.index("I"), label)
moves.add_action(move_types.index("L"), label)
moves.add_action(move_types.index("U"), label)
moves.get_oracle_sequence(example)
# We can't easily represent this on a Doc object. Not sure what the best solution
# would be, but I don't think it's an important use case?
@pytest.mark.skip(reason="No longer supported")
def test_oracle_moves_whitespace(en_vocab):
words = ["production", "\n", "of", "Northrop", "\n", "Corp.", "\n", "'s", "radar"]
biluo_tags = ["O", "O", "O", "B-ORG", None, "I-ORG", "L-ORG", "O", "O"]
doc = Doc(en_vocab, words=words)
example = Example.from_dict(doc, {"entities": biluo_tags})
moves = BiluoPushDown(en_vocab.strings)
move_types = ("M", "B", "I", "L", "U", "O")
for tag in biluo_tags:
if tag is None:
continue
elif tag == "O":
moves.add_action(move_types.index("O"), "")
else:
action, label = split_bilu_label(tag)
moves.add_action(move_types.index(action), label)
moves.get_oracle_sequence(example)
def test_accept_blocked_token():
"""Test succesful blocking of tokens to be in an entity."""
# 1. test normal behaviour
nlp1 = English()
doc1 = nlp1("I live in New York")
config = {}
ner1 = nlp1.create_pipe("ner", config=config)
assert [token.ent_iob_ for token in doc1] == ["", "", "", "", ""]
assert [token.ent_type_ for token in doc1] == ["", "", "", "", ""]
# Add the OUT action
ner1.moves.add_action(5, "")
ner1.add_label("GPE")
# Get into the state just before "New"
state1 = ner1.moves.init_batch([doc1])[0]
ner1.moves.apply_transition(state1, "O")
ner1.moves.apply_transition(state1, "O")
ner1.moves.apply_transition(state1, "O")
# Check that B-GPE is valid.
assert ner1.moves.is_valid(state1, "B-GPE")
# 2. test blocking behaviour
nlp2 = English()
doc2 = nlp2("I live in New York")
config = {}
ner2 = nlp2.create_pipe("ner", config=config)
# set "New York" to a blocked entity
doc2.set_ents([], blocked=[doc2[3:5]], default="unmodified")
assert [token.ent_iob_ for token in doc2] == ["", "", "", "B", "B"]
assert [token.ent_type_ for token in doc2] == ["", "", "", "", ""]
# Check that B-GPE is now invalid.
ner2.moves.add_action(4, "")
ner2.moves.add_action(5, "")
ner2.add_label("GPE")
state2 = ner2.moves.init_batch([doc2])[0]
ner2.moves.apply_transition(state2, "O")
ner2.moves.apply_transition(state2, "O")
ner2.moves.apply_transition(state2, "O")
# we can only use U- for "New"
assert not ner2.moves.is_valid(state2, "B-GPE")
assert ner2.moves.is_valid(state2, "U-")
ner2.moves.apply_transition(state2, "U-")
# we can only use U- for "York"
assert not ner2.moves.is_valid(state2, "B-GPE")
assert ner2.moves.is_valid(state2, "U-")
def test_train_empty():
"""Test that training an empty text does not throw errors."""
train_data = [
("Who is Shaka Khan?", {"entities": [(7, 17, "PERSON")]}),
("", {"entities": []}),
]
nlp = English()
train_examples = []
for t in train_data:
train_examples.append(Example.from_dict(nlp.make_doc(t[0]), t[1]))
ner = nlp.add_pipe("ner", last=True)
ner.add_label("PERSON")
nlp.initialize()
for itn in range(2):
losses = {}
batches = util.minibatch(train_examples, size=8)
for batch in batches:
nlp.update(batch, losses=losses)
def test_train_negative_deprecated():
"""Test that the deprecated negative entity format raises a custom error."""
train_data = [
("Who is Shaka Khan?", {"entities": [(7, 17, "!PERSON")]}),
]
nlp = English()
train_examples = []
for t in train_data:
train_examples.append(Example.from_dict(nlp.make_doc(t[0]), t[1]))
ner = nlp.add_pipe("ner", last=True)
ner.add_label("PERSON")
nlp.initialize()
for itn in range(2):
losses = {}
batches = util.minibatch(train_examples, size=8)
for batch in batches:
with pytest.raises(ValueError):
nlp.update(batch, losses=losses)
def test_overwrite_token():
nlp = English()
nlp.add_pipe("ner")
nlp.initialize()
# The untrained NER will predict O for each token
doc = nlp("I live in New York")
assert [token.ent_iob_ for token in doc] == ["O", "O", "O", "O", "O"]
assert [token.ent_type_ for token in doc] == ["", "", "", "", ""]
# Check that a new ner can overwrite O
config = {}
ner2 = nlp.create_pipe("ner", config=config)
ner2.moves.add_action(5, "")
ner2.add_label("GPE")
state = ner2.moves.init_batch([doc])[0]
assert ner2.moves.is_valid(state, "B-GPE")
assert ner2.moves.is_valid(state, "U-GPE")
ner2.moves.apply_transition(state, "B-GPE")
assert ner2.moves.is_valid(state, "I-GPE")
assert ner2.moves.is_valid(state, "L-GPE")
def test_empty_ner():
nlp = English()
ner = nlp.add_pipe("ner")
ner.add_label("MY_LABEL")
nlp.initialize()
doc = nlp("John is watching the news about Croatia's elections")
# if this goes wrong, the initialization of the parser's upper layer is probably broken
result = ["O", "O", "O", "O", "O", "O", "O", "O", "O"]
assert [token.ent_iob_ for token in doc] == result
def test_ruler_before_ner():
"""Test that an NER works after an entity_ruler: the second can add annotations"""
nlp = English()
# 1 : Entity Ruler - should set "this" to B and everything else to empty
patterns = [{"label": "THING", "pattern": "This"}]
ruler = nlp.add_pipe("entity_ruler")
# 2: untrained NER - should set everything else to O
untrained_ner = nlp.add_pipe("ner")
untrained_ner.add_label("MY_LABEL")
nlp.initialize()
ruler.add_patterns(patterns)
doc = nlp("This is Antti Korhonen speaking in Finland")
expected_iobs = ["B", "O", "O", "O", "O", "O", "O"]
expected_types = ["THING", "", "", "", "", "", ""]
assert [token.ent_iob_ for token in doc] == expected_iobs
assert [token.ent_type_ for token in doc] == expected_types
def test_ner_constructor(en_vocab):
config = {
"update_with_oracle_cut_size": 100,
}
cfg = {"model": DEFAULT_NER_MODEL}
model = registry.resolve(cfg, validate=True)["model"]
EntityRecognizer(en_vocab, model, **config)
EntityRecognizer(en_vocab, model)
def test_ner_before_ruler():
"""Test that an entity_ruler works after an NER: the second can overwrite O annotations"""
nlp = English()
# 1: untrained NER - should set everything to O
untrained_ner = nlp.add_pipe("ner", name="uner")
untrained_ner.add_label("MY_LABEL")
nlp.initialize()
# 2 : Entity Ruler - should set "this" to B and keep everything else O
patterns = [{"label": "THING", "pattern": "This"}]
ruler = nlp.add_pipe("entity_ruler")
ruler.add_patterns(patterns)
doc = nlp("This is Antti Korhonen speaking in Finland")
expected_iobs = ["B", "O", "O", "O", "O", "O", "O"]
expected_types = ["THING", "", "", "", "", "", ""]
assert [token.ent_iob_ for token in doc] == expected_iobs
assert [token.ent_type_ for token in doc] == expected_types
def test_block_ner():
"""Test functionality for blocking tokens so they can't be in a named entity"""
# block "Antti L Korhonen" from being a named entity
nlp = English()
nlp.add_pipe("blocker", config={"start": 2, "end": 5})
untrained_ner = nlp.add_pipe("ner")
untrained_ner.add_label("MY_LABEL")
nlp.initialize()
doc = nlp("This is Antti L Korhonen speaking in Finland")
expected_iobs = ["O", "O", "B", "B", "B", "O", "O", "O"]
expected_types = ["", "", "", "", "", "", "", ""]
assert [token.ent_iob_ for token in doc] == expected_iobs
assert [token.ent_type_ for token in doc] == expected_types
@pytest.mark.parametrize("use_upper", [True, False])
def test_overfitting_IO(use_upper):
# Simple test to try and quickly overfit the NER component
nlp = English()
ner = nlp.add_pipe("ner", config={"model": {"use_upper": use_upper}})
train_examples = []
for text, annotations in TRAIN_DATA:
train_examples.append(Example.from_dict(nlp.make_doc(text), annotations))
for ent in annotations.get("entities"):
ner.add_label(ent[2])
optimizer = nlp.initialize()
for i in range(50):
losses = {}
nlp.update(train_examples, sgd=optimizer, losses=losses)
assert losses["ner"] < 0.00001
# test the trained model
test_text = "I like London."
doc = nlp(test_text)
ents = doc.ents
assert len(ents) == 1
assert ents[0].text == "London"
assert ents[0].label_ == "LOC"
# Also test the results are still the same after IO
with make_tempdir() as tmp_dir:
nlp.to_disk(tmp_dir)
nlp2 = util.load_model_from_path(tmp_dir)
doc2 = nlp2(test_text)
ents2 = doc2.ents
assert len(ents2) == 1
assert ents2[0].text == "London"
assert ents2[0].label_ == "LOC"
# Ensure that the predictions are still the same, even after adding a new label
ner2 = nlp2.get_pipe("ner")
assert ner2.model.attrs["has_upper"] == use_upper
ner2.add_label("RANDOM_NEW_LABEL")
doc3 = nlp2(test_text)
ents3 = doc3.ents
assert len(ents3) == 1
assert ents3[0].text == "London"
assert ents3[0].label_ == "LOC"
# Make sure that running pipe twice, or comparing to call, always amounts to the same predictions
texts = [
"Just a sentence.",
"Then one more sentence about London.",
"Here is another one.",
"I like London.",
]
batch_deps_1 = [doc.to_array([ENT_IOB]) for doc in nlp.pipe(texts)]
batch_deps_2 = [doc.to_array([ENT_IOB]) for doc in nlp.pipe(texts)]
no_batch_deps = [doc.to_array([ENT_IOB]) for doc in [nlp(text) for text in texts]]
assert_equal(batch_deps_1, batch_deps_2)
assert_equal(batch_deps_1, no_batch_deps)
# test that kb_id is preserved
test_text = "I like London and London."
doc = nlp.make_doc(test_text)
doc.ents = [Span(doc, 2, 3, label="LOC", kb_id=1234)]
ents = doc.ents
assert len(ents) == 1
assert ents[0].text == "London"
assert ents[0].label_ == "LOC"
assert ents[0].kb_id == 1234
doc = nlp.get_pipe("ner")(doc)
ents = doc.ents
assert len(ents) == 2
assert ents[0].text == "London"
assert ents[0].label_ == "LOC"
assert ents[0].kb_id == 1234
# ent added by ner has kb_id == 0
assert ents[1].text == "London"
assert ents[1].label_ == "LOC"
assert ents[1].kb_id == 0
def test_beam_ner_scores():
# Test that we can get confidence values out of the beam_ner pipe
beam_width = 16
beam_density = 0.0001
nlp = English()
config = {
"beam_width": beam_width,
"beam_density": beam_density,
}
ner = nlp.add_pipe("beam_ner", config=config)
train_examples = []
for text, annotations in TRAIN_DATA:
train_examples.append(Example.from_dict(nlp.make_doc(text), annotations))
for ent in annotations.get("entities"):
ner.add_label(ent[2])
optimizer = nlp.initialize()
# update once
losses = {}
nlp.update(train_examples, sgd=optimizer, losses=losses)
# test the scores from the beam
test_text = "I like London."
doc = nlp.make_doc(test_text)
docs = [doc]
beams = ner.predict(docs)
entity_scores = ner.scored_ents(beams)[0]
for j in range(len(doc)):
for label in ner.labels:
score = entity_scores[(j, j + 1, label)]
eps = 0.00001
assert 0 - eps <= score <= 1 + eps
def test_beam_overfitting_IO(neg_key):
# Simple test to try and quickly overfit the Beam NER component
nlp = English()
beam_width = 16
beam_density = 0.0001
config = {
"beam_width": beam_width,
"beam_density": beam_density,
"incorrect_spans_key": neg_key,
}
ner = nlp.add_pipe("beam_ner", config=config)
train_examples = []
for text, annotations in TRAIN_DATA:
train_examples.append(Example.from_dict(nlp.make_doc(text), annotations))
for ent in annotations.get("entities"):
ner.add_label(ent[2])
optimizer = nlp.initialize()
# run overfitting
for i in range(50):
losses = {}
nlp.update(train_examples, sgd=optimizer, losses=losses)
assert losses["beam_ner"] < 0.0001
# test the scores from the beam
test_text = "I like London"
docs = [nlp.make_doc(test_text)]
beams = ner.predict(docs)
entity_scores = ner.scored_ents(beams)[0]
assert entity_scores[(2, 3, "LOC")] == 1.0
assert entity_scores[(2, 3, "PERSON")] == 0.0
assert len(nlp(test_text).ents) == 1
# Also test the results are still the same after IO
with make_tempdir() as tmp_dir:
nlp.to_disk(tmp_dir)
nlp2 = util.load_model_from_path(tmp_dir)
docs2 = [nlp2.make_doc(test_text)]
ner2 = nlp2.get_pipe("beam_ner")
beams2 = ner2.predict(docs2)
entity_scores2 = ner2.scored_ents(beams2)[0]
assert entity_scores2[(2, 3, "LOC")] == 1.0
assert entity_scores2[(2, 3, "PERSON")] == 0.0
# Try to unlearn the entity by using negative annotations
neg_doc = nlp.make_doc(test_text)
neg_ex = Example(neg_doc, neg_doc)
neg_ex.reference.spans[neg_key] = [Span(neg_doc, 2, 3, "LOC")]
neg_train_examples = [neg_ex]
for i in range(20):
losses = {}
nlp.update(neg_train_examples, sgd=optimizer, losses=losses)
# test the "untrained" model
assert len(nlp(test_text).ents) == 0
def test_neg_annotation(neg_key):
"""Check that the NER update works with a negative annotation that is a different label of the correct one,
or partly overlapping, etc"""
nlp = English()
beam_width = 16
beam_density = 0.0001
config = {
"beam_width": beam_width,
"beam_density": beam_density,
"incorrect_spans_key": neg_key,
}
ner = nlp.add_pipe("beam_ner", config=config)
train_text = "Who is Shaka Khan?"
neg_doc = nlp.make_doc(train_text)
ner.add_label("PERSON")
ner.add_label("ORG")
example = Example.from_dict(neg_doc, {"entities": [(7, 17, "PERSON")]})
example.reference.spans[neg_key] = [
Span(example.reference, 2, 4, "ORG"),
Span(example.reference, 2, 3, "PERSON"),
Span(example.reference, 1, 4, "PERSON"),
]
optimizer = nlp.initialize()
for i in range(2):
losses = {}
nlp.update([example], sgd=optimizer, losses=losses)
def test_neg_annotation_conflict(neg_key):
# Check that NER raises for a negative annotation that is THE SAME as a correct one
nlp = English()
beam_width = 16
beam_density = 0.0001
config = {
"beam_width": beam_width,
"beam_density": beam_density,
"incorrect_spans_key": neg_key,
}
ner = nlp.add_pipe("beam_ner", config=config)
train_text = "Who is Shaka Khan?"
neg_doc = nlp.make_doc(train_text)
ner.add_label("PERSON")
ner.add_label("LOC")
example = Example.from_dict(neg_doc, {"entities": [(7, 17, "PERSON")]})
example.reference.spans[neg_key] = [Span(example.reference, 2, 4, "PERSON")]
assert len(example.reference.ents) == 1
assert example.reference.ents[0].text == "Shaka Khan"
assert example.reference.ents[0].label_ == "PERSON"
assert len(example.reference.spans[neg_key]) == 1
assert example.reference.spans[neg_key][0].text == "Shaka Khan"
assert example.reference.spans[neg_key][0].label_ == "PERSON"
optimizer = nlp.initialize()
for i in range(2):
losses = {}
with pytest.raises(ValueError):
nlp.update([example], sgd=optimizer, losses=losses)
def test_beam_valid_parse(neg_key):
"""Regression test for previously flakey behaviour"""
nlp = English()
beam_width = 16
beam_density = 0.0001
config = {
"beam_width": beam_width,
"beam_density": beam_density,
"incorrect_spans_key": neg_key,
}
nlp.add_pipe("beam_ner", config=config)
# fmt: off
tokens = ['FEDERAL', 'NATIONAL', 'MORTGAGE', 'ASSOCIATION', '(', 'Fannie', 'Mae', '):', 'Posted', 'yields', 'on', '30', 'year', 'mortgage', 'commitments', 'for', 'delivery', 'within', '30', 'days', '(', 'priced', 'at', 'par', ')', '9.75', '%', ',', 'standard', 'conventional', 'fixed', '-', 'rate', 'mortgages', ';', '8.70', '%', ',', '6/2', 'rate', 'capped', 'one', '-', 'year', 'adjustable', 'rate', 'mortgages', '.', 'Source', ':', 'Telerate', 'Systems', 'Inc.']
iob = ['B-ORG', 'I-ORG', 'I-ORG', 'L-ORG', 'O', 'B-ORG', 'L-ORG', 'O', 'O', 'O', 'O', 'B-DATE', 'L-DATE', 'O', 'O', 'O', 'O', 'O', 'B-DATE', 'L-DATE', 'O', 'O', 'O', 'O', 'O', 'B-PERCENT', 'L-PERCENT', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'B-PERCENT', 'L-PERCENT', 'O', 'U-CARDINAL', 'O', 'O', 'B-DATE', 'I-DATE', 'L-DATE', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O']
# fmt: on
doc = Doc(nlp.vocab, words=tokens)
example = Example.from_dict(doc, {"ner": iob})
neg_span = Span(example.reference, 50, 53, "ORG")
example.reference.spans[neg_key] = [neg_span]
optimizer = nlp.initialize()
for i in range(5):
losses = {}
nlp.update([example], sgd=optimizer, losses=losses)
assert "beam_ner" in losses
def test_ner_warns_no_lookups(caplog):
nlp = English()
assert nlp.lang in util.LEXEME_NORM_LANGS
nlp.vocab.lookups = Lookups()
assert not len(nlp.vocab.lookups)
nlp.add_pipe("ner")
with caplog.at_level(logging.DEBUG):
nlp.initialize()
assert "W033" in caplog.text
caplog.clear()
nlp.vocab.lookups.add_table("lexeme_norm")
nlp.vocab.lookups.get_table("lexeme_norm")["a"] = "A"
with caplog.at_level(logging.DEBUG):
nlp.initialize()
assert "W033" not in caplog.text
@Language.factory("blocker")
class BlockerComponent1:
def __init__(self, nlp, start, end, name="my_blocker"):
self.start = start
self.end = end
self.name = name
def __call__(self, doc):
doc.set_ents([], blocked=[doc[self.start : self.end]], default="unmodified")
return doc