mirror of
https://github.com/explosion/spaCy.git
synced 2024-11-11 20:28:20 +03:00
180 lines
6.4 KiB
Python
180 lines
6.4 KiB
Python
from typing import Optional
|
|
from thinc.api import Model, reduce_mean, Linear, list2ragged, Logistic
|
|
from thinc.api import chain, concatenate, clone, Dropout, ParametricAttention
|
|
from thinc.api import SparseLinear, Softmax, softmax_activation, Maxout, reduce_sum
|
|
from thinc.api import HashEmbed, with_array, with_cpu, uniqued
|
|
from thinc.api import Relu, residual, expand_window, FeatureExtractor
|
|
|
|
from ...attrs import ID, ORTH, PREFIX, SUFFIX, SHAPE, LOWER
|
|
from ...util import registry
|
|
from ..extract_ngrams import extract_ngrams
|
|
from ..staticvectors import StaticVectors
|
|
|
|
|
|
@registry.architectures.register("spacy.TextCatCNN.v1")
|
|
def build_simple_cnn_text_classifier(
|
|
tok2vec: Model, exclusive_classes: bool, nO: Optional[int] = None
|
|
) -> Model:
|
|
"""
|
|
Build a simple CNN text classifier, given a token-to-vector model as inputs.
|
|
If exclusive_classes=True, a softmax non-linearity is applied, so that the
|
|
outputs sum to 1. If exclusive_classes=False, a logistic non-linearity
|
|
is applied instead, so that outputs are in the range [0, 1].
|
|
"""
|
|
with Model.define_operators({">>": chain}):
|
|
if exclusive_classes:
|
|
output_layer = Softmax(nO=nO, nI=tok2vec.get_dim("nO"))
|
|
model = tok2vec >> list2ragged() >> reduce_mean() >> output_layer
|
|
model.set_ref("output_layer", output_layer)
|
|
else:
|
|
linear_layer = Linear(nO=nO, nI=tok2vec.get_dim("nO"))
|
|
model = (
|
|
tok2vec >> list2ragged() >> reduce_mean() >> linear_layer >> Logistic()
|
|
)
|
|
model.set_ref("output_layer", linear_layer)
|
|
model.set_ref("tok2vec", tok2vec)
|
|
model.set_dim("nO", nO)
|
|
model.attrs["multi_label"] = not exclusive_classes
|
|
return model
|
|
|
|
|
|
@registry.architectures.register("spacy.TextCatBOW.v1")
|
|
def build_bow_text_classifier(
|
|
exclusive_classes: bool,
|
|
ngram_size: int,
|
|
no_output_layer: bool,
|
|
nO: Optional[int] = None,
|
|
) -> Model:
|
|
# Don't document this yet, I'm not sure it's right.
|
|
with Model.define_operators({">>": chain}):
|
|
sparse_linear = SparseLinear(nO)
|
|
model = extract_ngrams(ngram_size, attr=ORTH) >> sparse_linear
|
|
model = with_cpu(model, model.ops)
|
|
if not no_output_layer:
|
|
output_layer = softmax_activation() if exclusive_classes else Logistic()
|
|
model = model >> with_cpu(output_layer, output_layer.ops)
|
|
model.set_ref("output_layer", sparse_linear)
|
|
model.attrs["multi_label"] = not exclusive_classes
|
|
return model
|
|
|
|
|
|
@registry.architectures.register("spacy.TextCatEnsemble.v1")
|
|
def build_text_classifier(
|
|
width: int,
|
|
embed_size: int,
|
|
pretrained_vectors: Optional[bool],
|
|
exclusive_classes: bool,
|
|
ngram_size: int,
|
|
window_size: int,
|
|
conv_depth: int,
|
|
dropout: Optional[float],
|
|
nO: Optional[int] = None,
|
|
) -> Model:
|
|
# Don't document this yet, I'm not sure it's right.
|
|
cols = [ORTH, LOWER, PREFIX, SUFFIX, SHAPE, ID]
|
|
with Model.define_operators({">>": chain, "|": concatenate, "**": clone}):
|
|
lower = HashEmbed(
|
|
nO=width, nV=embed_size, column=cols.index(LOWER), dropout=dropout, seed=10
|
|
)
|
|
prefix = HashEmbed(
|
|
nO=width // 2,
|
|
nV=embed_size,
|
|
column=cols.index(PREFIX),
|
|
dropout=dropout,
|
|
seed=11,
|
|
)
|
|
suffix = HashEmbed(
|
|
nO=width // 2,
|
|
nV=embed_size,
|
|
column=cols.index(SUFFIX),
|
|
dropout=dropout,
|
|
seed=12,
|
|
)
|
|
shape = HashEmbed(
|
|
nO=width // 2,
|
|
nV=embed_size,
|
|
column=cols.index(SHAPE),
|
|
dropout=dropout,
|
|
seed=13,
|
|
)
|
|
width_nI = sum(layer.get_dim("nO") for layer in [lower, prefix, suffix, shape])
|
|
trained_vectors = FeatureExtractor(cols) >> with_array(
|
|
uniqued(
|
|
(lower | prefix | suffix | shape)
|
|
>> Maxout(nO=width, nI=width_nI, normalize=True),
|
|
column=cols.index(ORTH),
|
|
)
|
|
)
|
|
if pretrained_vectors:
|
|
static_vectors = StaticVectors(width)
|
|
vector_layer = trained_vectors | static_vectors
|
|
vectors_width = width * 2
|
|
else:
|
|
vector_layer = trained_vectors
|
|
vectors_width = width
|
|
tok2vec = vector_layer >> with_array(
|
|
Maxout(width, vectors_width, normalize=True)
|
|
>> residual(
|
|
(
|
|
expand_window(window_size=window_size)
|
|
>> Maxout(
|
|
nO=width, nI=width * ((window_size * 2) + 1), normalize=True
|
|
)
|
|
)
|
|
)
|
|
** conv_depth,
|
|
pad=conv_depth,
|
|
)
|
|
cnn_model = (
|
|
tok2vec
|
|
>> list2ragged()
|
|
>> ParametricAttention(width)
|
|
>> reduce_sum()
|
|
>> residual(Maxout(nO=width, nI=width))
|
|
>> Linear(nO=nO, nI=width)
|
|
>> Dropout(0.0)
|
|
)
|
|
|
|
linear_model = build_bow_text_classifier(
|
|
nO=nO,
|
|
ngram_size=ngram_size,
|
|
exclusive_classes=exclusive_classes,
|
|
no_output_layer=False,
|
|
)
|
|
nO_double = nO * 2 if nO else None
|
|
if exclusive_classes:
|
|
output_layer = Softmax(nO=nO, nI=nO_double)
|
|
else:
|
|
output_layer = Linear(nO=nO, nI=nO_double) >> Dropout(0.0) >> Logistic()
|
|
model = (linear_model | cnn_model) >> output_layer
|
|
model.set_ref("tok2vec", tok2vec)
|
|
if model.has_dim("nO") is not False:
|
|
model.set_dim("nO", nO)
|
|
model.set_ref("output_layer", linear_model.get_ref("output_layer"))
|
|
model.attrs["multi_label"] = not exclusive_classes
|
|
return model
|
|
|
|
|
|
@registry.architectures.register("spacy.TextCatLowData.v1")
|
|
def build_text_classifier_lowdata(
|
|
width: int,
|
|
pretrained_vectors: Optional[bool],
|
|
dropout: Optional[float],
|
|
nO: Optional[int] = None,
|
|
) -> Model:
|
|
# Don't document this yet, I'm not sure it's right.
|
|
# Note, before v.3, this was the default if setting "low_data" and "pretrained_dims"
|
|
with Model.define_operators({">>": chain, "**": clone}):
|
|
model = (
|
|
StaticVectors(width)
|
|
>> list2ragged()
|
|
>> ParametricAttention(width)
|
|
>> reduce_sum()
|
|
>> residual(Relu(width, width)) ** 2
|
|
>> Linear(nO, width)
|
|
)
|
|
if dropout:
|
|
model = model >> Dropout(dropout)
|
|
model = model >> Logistic()
|
|
return model
|