mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-10-31 16:07:41 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			52 lines
		
	
	
		
			1.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			52 lines
		
	
	
		
			1.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import numpy
 | |
| from spacy.attrs import HEAD, DEP
 | |
| from spacy.symbols import nsubj, dobj, amod, nmod, conj, cc, root
 | |
| from spacy.lang.en.syntax_iterators import noun_chunks
 | |
| 
 | |
| import pytest
 | |
| 
 | |
| 
 | |
| from ...util import get_doc
 | |
| 
 | |
| 
 | |
| def test_noun_chunks_is_parsed(en_tokenizer):
 | |
|     """Test that noun_chunks raises Value Error for 'en' language if Doc is not parsed.
 | |
|     To check this test, we're constructing a Doc
 | |
|     with a new Vocab here and forcing is_parsed to 'False'
 | |
|     to make sure the noun chunks don't run.
 | |
|     """
 | |
|     doc = en_tokenizer("This is a sentence")
 | |
|     doc.is_parsed = False
 | |
|     with pytest.raises(ValueError):
 | |
|         list(doc.noun_chunks)
 | |
| 
 | |
| 
 | |
| def test_en_noun_chunks_not_nested(en_vocab):
 | |
|     words = ["Peter", "has", "chronic", "command", "and", "control", "issues"]
 | |
|     heads = [1, 0, 4, 3, -1, -2, -5]
 | |
|     deps = ["nsubj", "ROOT", "amod", "nmod", "cc", "conj", "dobj"]
 | |
|     doc = get_doc(en_vocab, words=words, heads=heads, deps=deps)
 | |
|     doc.from_array(
 | |
|         [HEAD, DEP],
 | |
|         numpy.asarray(
 | |
|             [
 | |
|                 [1, nsubj],
 | |
|                 [0, root],
 | |
|                 [4, amod],
 | |
|                 [3, nmod],
 | |
|                 [-1, cc],
 | |
|                 [-2, conj],
 | |
|                 [-5, dobj],
 | |
|             ],
 | |
|             dtype="uint64",
 | |
|         ),
 | |
|     )
 | |
|     doc.noun_chunks_iterator = noun_chunks
 | |
|     word_occurred = {}
 | |
|     for chunk in doc.noun_chunks:
 | |
|         for word in chunk:
 | |
|             word_occurred.setdefault(word.text, 0)
 | |
|             word_occurred[word.text] += 1
 | |
|     for word, freq in word_occurred.items():
 | |
|         assert freq == 1, (word, [chunk.text for chunk in doc.noun_chunks])
 |