mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-10-31 16:07:41 +03:00 
			
		
		
		
	* Remove unicode declarations * Remove Python 3.5 and 2.7 from CI * Don't require pathlib * Replace compat helpers * Remove OrderedDict * Use f-strings * Set Cython compiler language level * Fix typo * Re-add OrderedDict for Table * Update setup.cfg * Revert CONTRIBUTING.md * Revert lookups.md * Revert top-level.md * Small adjustments and docs [ci skip]
		
			
				
	
	
		
			48 lines
		
	
	
		
			1.3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			48 lines
		
	
	
		
			1.3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import pytest
 | |
| from spacy.language import Language
 | |
| from spacy.tokens import Span
 | |
| 
 | |
| from ..util import get_doc
 | |
| 
 | |
| 
 | |
| @pytest.fixture
 | |
| def doc(en_tokenizer):
 | |
|     text = "I like New York in Autumn."
 | |
|     heads = [1, 0, 1, -2, -3, -1, -5]
 | |
|     tags = ["PRP", "IN", "NNP", "NNP", "IN", "NNP", "."]
 | |
|     pos = ["PRON", "VERB", "PROPN", "PROPN", "ADP", "PROPN", "PUNCT"]
 | |
|     deps = ["ROOT", "prep", "compound", "pobj", "prep", "pobj", "punct"]
 | |
|     tokens = en_tokenizer(text)
 | |
|     doc = get_doc(
 | |
|         tokens.vocab,
 | |
|         words=[t.text for t in tokens],
 | |
|         heads=heads,
 | |
|         tags=tags,
 | |
|         pos=pos,
 | |
|         deps=deps,
 | |
|     )
 | |
|     doc.ents = [Span(doc, 2, 4, doc.vocab.strings["GPE"])]
 | |
|     doc.is_parsed = True
 | |
|     doc.is_tagged = True
 | |
|     return doc
 | |
| 
 | |
| 
 | |
| def test_factories_merge_noun_chunks(doc):
 | |
|     assert len(doc) == 7
 | |
|     nlp = Language()
 | |
|     merge_noun_chunks = nlp.create_pipe("merge_noun_chunks")
 | |
|     merge_noun_chunks(doc)
 | |
|     assert len(doc) == 6
 | |
|     assert doc[2].text == "New York"
 | |
| 
 | |
| 
 | |
| def test_factories_merge_ents(doc):
 | |
|     assert len(doc) == 7
 | |
|     assert len(list(doc.ents)) == 1
 | |
|     nlp = Language()
 | |
|     merge_entities = nlp.create_pipe("merge_entities")
 | |
|     merge_entities(doc)
 | |
|     assert len(doc) == 6
 | |
|     assert len(list(doc.ents)) == 1
 | |
|     assert doc[2].text == "New York"
 |