spaCy/spacy/lang/es/syntax_iterators.py
2018-02-21 15:39:04 -08:00

58 lines
1.7 KiB
Python

# coding: utf8
from __future__ import unicode_literals
from ...symbols import NOUN, PROPN, PRON, VERB, AUX
def noun_chunks(obj):
doc = obj.doc
if not len(doc):
return
np_label = doc.vocab.strings.add('NP')
left_labels = ['det', 'fixed', 'neg'] #['nunmod', 'det', 'appos', 'fixed']
right_labels = ['flat', 'fixed', 'compound', 'neg']
stop_labels = ['punct']
np_left_deps = [doc.vocab.strings.add(label) for label in left_labels]
np_right_deps = [doc.vocab.strings.add(label) for label in right_labels]
stop_deps = [doc.vocab.strings.add(label) for label in stop_labels]
token = doc[0]
while token and token.i < len(doc):
if token.pos in [PROPN, NOUN, PRON]:
left, right = noun_bounds(doc, token, np_left_deps, np_right_deps, stop_deps)
yield left.i, right.i+1, np_label
token = right
token = next_token(token)
def is_verb_token(token):
return token.pos in [VERB, AUX]
def next_token(token):
try:
return token.nbor()
except:
return None
def noun_bounds(doc, root, np_left_deps, np_right_deps, stop_deps):
left_bound = root
for token in reversed(list(root.lefts)):
if token.dep in np_left_deps:
left_bound = token
right_bound = root
for token in root.rights:
if (token.dep in np_right_deps):
left, right = noun_bounds(doc, token, np_left_deps, np_right_deps, stop_deps)
if list(filter(lambda t: is_verb_token(t) or t.dep in stop_deps,
doc[left_bound.i: right.i])):
break
else:
right_bound = right
return left_bound, right_bound
SYNTAX_ITERATORS = {
'noun_chunks': noun_chunks
}