mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-10-30 23:47:31 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			331 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			331 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| from typing import Iterable, Tuple, Optional, Dict, Callable, Any, List
 | |
| import warnings
 | |
| 
 | |
| from thinc.types import Floats2d, Floats3d, Ints2d
 | |
| from thinc.api import Model, Config, Optimizer, CategoricalCrossentropy
 | |
| from thinc.api import set_dropout_rate, to_categorical
 | |
| from itertools import islice
 | |
| import srsly
 | |
| 
 | |
| from .trainable_pipe import TrainablePipe
 | |
| from ..language import Language
 | |
| from ..training import Example, validate_examples, validate_get_examples
 | |
| from ..errors import Errors
 | |
| from ..scorer import Scorer, doc2clusters
 | |
| from ..tokens import Doc
 | |
| from ..vocab import Vocab
 | |
| from ..util import registry, from_bytes, from_disk
 | |
| 
 | |
| from ..ml.models.coref_util import (
 | |
|     MentionClusters,
 | |
|     DEFAULT_CLUSTER_PREFIX,
 | |
| )
 | |
| 
 | |
| default_span_predictor_config = """
 | |
| [model]
 | |
| @architectures = "spacy.SpanPredictor.v1"
 | |
| hidden_size = 1024
 | |
| distance_embedding_size = 64
 | |
| conv_channels = 4
 | |
| window_size = 1
 | |
| max_distance = 128
 | |
| prefix = coref_head_clusters
 | |
| 
 | |
| [model.tok2vec]
 | |
| @architectures = "spacy.Tok2Vec.v2"
 | |
| 
 | |
| [model.tok2vec.embed]
 | |
| @architectures = "spacy.MultiHashEmbed.v1"
 | |
| width = 64
 | |
| rows = [2000, 2000, 1000, 1000, 1000, 1000]
 | |
| attrs = ["ORTH", "LOWER", "PREFIX", "SUFFIX", "SHAPE", "ID"]
 | |
| include_static_vectors = false
 | |
| 
 | |
| [model.tok2vec.encode]
 | |
| @architectures = "spacy.MaxoutWindowEncoder.v2"
 | |
| width = ${model.tok2vec.embed.width}
 | |
| window_size = 1
 | |
| maxout_pieces = 3
 | |
| depth = 2
 | |
| """
 | |
| DEFAULT_SPAN_PREDICTOR_MODEL = Config().from_str(default_span_predictor_config)["model"]
 | |
| 
 | |
| 
 | |
| def span_predictor_scorer(examples: Iterable[Example], **kwargs) -> Dict[str, Any]:
 | |
|     return Scorer.score_span_predictions(examples, **kwargs)
 | |
| 
 | |
| 
 | |
| @registry.scorers("spacy.span_predictor_scorer.v1")
 | |
| def make_span_predictor_scorer():
 | |
|     return span_predictor_scorer
 | |
| 
 | |
| 
 | |
| @Language.factory(
 | |
|     "span_predictor",
 | |
|     assigns=["doc.spans"],
 | |
|     requires=["doc.spans"],
 | |
|     default_config={
 | |
|         "model": DEFAULT_SPAN_PREDICTOR_MODEL,
 | |
|         "input_prefix": "coref_head_clusters",
 | |
|         "output_prefix": "coref_clusters",
 | |
|         "scorer": {"@scorers": "spacy.span_predictor_scorer.v1"},
 | |
|     },
 | |
|     default_score_weights={"span_accuracy": 1.0},
 | |
| )
 | |
| def make_span_predictor(
 | |
|     nlp: Language,
 | |
|     name: str,
 | |
|     model,
 | |
|     input_prefix: str = "coref_head_clusters",
 | |
|     output_prefix: str = "coref_clusters",
 | |
|     scorer: Optional[Callable] = span_predictor_scorer,
 | |
| ) -> "SpanPredictor":
 | |
|     """Create a SpanPredictor component."""
 | |
|     return SpanPredictor(
 | |
|         nlp.vocab,
 | |
|         model,
 | |
|         name,
 | |
|         input_prefix=input_prefix,
 | |
|         output_prefix=output_prefix,
 | |
|         scorer=scorer,
 | |
|     )
 | |
| 
 | |
| 
 | |
| class SpanPredictor(TrainablePipe):
 | |
|     """Pipeline component to resolve one-token spans to full spans.
 | |
| 
 | |
|     Used in coreference resolution.
 | |
|     """
 | |
| 
 | |
|     def __init__(
 | |
|         self,
 | |
|         vocab: Vocab,
 | |
|         model: Model,
 | |
|         name: str = "span_predictor",
 | |
|         *,
 | |
|         input_prefix: str = "coref_head_clusters",
 | |
|         output_prefix: str = "coref_clusters",
 | |
|         scorer: Optional[Callable] = span_predictor_scorer,
 | |
|     ) -> None:
 | |
|         self.vocab = vocab
 | |
|         self.model = model
 | |
|         self.name = name
 | |
|         self.input_prefix = input_prefix
 | |
|         self.output_prefix = output_prefix
 | |
| 
 | |
|         self.scorer = scorer
 | |
|         self.cfg: Dict[str, Any] = {
 | |
|             "output_prefix": output_prefix,
 | |
|         }
 | |
| 
 | |
|     def predict(self, docs: Iterable[Doc]) -> List[MentionClusters]:
 | |
|         # for now pretend there's just one doc
 | |
| 
 | |
|         out = []
 | |
|         for doc in docs:
 | |
|             # TODO check shape here
 | |
|             span_scores = self.model.predict([doc])
 | |
|             if span_scores.size:
 | |
|                 # the information about clustering has to come from the input docs
 | |
|                 # first let's convert the scores to a list of span idxs
 | |
|                 start_scores = span_scores[:, :, 0]
 | |
|                 end_scores = span_scores[:, :, 1]
 | |
|                 starts = start_scores.argmax(axis=1)
 | |
|                 ends = end_scores.argmax(axis=1)
 | |
| 
 | |
|                 # TODO check start < end
 | |
| 
 | |
|                 # get the old clusters (shape will be preserved)
 | |
|                 clusters = doc2clusters(doc, self.input_prefix)
 | |
|                 cidx = 0
 | |
|                 out_clusters = []
 | |
|                 for cluster in clusters:
 | |
|                     ncluster = []
 | |
|                     for mention in cluster:
 | |
|                         ncluster.append((starts[cidx], ends[cidx]))
 | |
|                         cidx += 1
 | |
|                     out_clusters.append(ncluster)
 | |
|             else:
 | |
|                 out_clusters = []
 | |
|             out.append(out_clusters)
 | |
|         return out
 | |
| 
 | |
|     def set_annotations(self, docs: Iterable[Doc], clusters_by_doc) -> None:
 | |
|         for doc, clusters in zip(docs, clusters_by_doc):
 | |
|             for ii, cluster in enumerate(clusters):
 | |
|                 spans = [doc[mm[0] : mm[1]] for mm in cluster]
 | |
|                 doc.spans[f"{self.output_prefix}_{ii}"] = spans
 | |
| 
 | |
|     def update(
 | |
|         self,
 | |
|         examples: Iterable[Example],
 | |
|         *,
 | |
|         drop: float = 0.0,
 | |
|         sgd: Optional[Optimizer] = None,
 | |
|         losses: Optional[Dict[str, float]] = None,
 | |
|     ) -> Dict[str, float]:
 | |
|         """Learn from a batch of documents and gold-standard information,
 | |
|         updating the pipe's model. Delegates to predict and get_loss.
 | |
|         """
 | |
|         if losses is None:
 | |
|             losses = {}
 | |
|         losses.setdefault(self.name, 0.0)
 | |
|         validate_examples(examples, "SpanPredictor.update")
 | |
|         if not any(len(eg.reference) if eg.reference else 0 for eg in examples):
 | |
|             # Handle cases where there are no tokens in any docs.
 | |
|             return losses
 | |
|         set_dropout_rate(self.model, drop)
 | |
| 
 | |
|         total_loss = 0
 | |
|         for eg in examples:
 | |
|             span_scores, backprop = self.model.begin_update([eg.predicted])
 | |
|             # FIXME, this only happens once in the first 1000 docs of OntoNotes
 | |
|             # and I'm not sure yet why.
 | |
|             if span_scores.size:
 | |
|                 loss, d_scores = self.get_loss([eg], span_scores)
 | |
|                 total_loss += loss
 | |
|                 # TODO check shape here
 | |
|                 backprop((d_scores))
 | |
| 
 | |
|         if sgd is not None:
 | |
|             self.finish_update(sgd)
 | |
|         losses[self.name] += total_loss
 | |
|         return losses
 | |
| 
 | |
|     def rehearse(
 | |
|         self,
 | |
|         examples: Iterable[Example],
 | |
|         *,
 | |
|         drop: float = 0.0,
 | |
|         sgd: Optional[Optimizer] = None,
 | |
|         losses: Optional[Dict[str, float]] = None,
 | |
|     ) -> Dict[str, float]:
 | |
|         # TODO this should be added later
 | |
|         raise NotImplementedError(
 | |
|             Errors.E931.format(
 | |
|                 parent="SpanPredictor", method="add_label", name=self.name
 | |
|             )
 | |
|         )
 | |
| 
 | |
|     def add_label(self, label: str) -> int:
 | |
|         """Technically this method should be implemented from TrainablePipe,
 | |
|         but it is not relevant for this component.
 | |
|         """
 | |
|         raise NotImplementedError(
 | |
|             Errors.E931.format(
 | |
|                 parent="SpanPredictor", method="add_label", name=self.name
 | |
|             )
 | |
|         )
 | |
| 
 | |
|     def get_loss(
 | |
|         self,
 | |
|         examples: Iterable[Example],
 | |
|         span_scores: Floats3d,
 | |
|     ):
 | |
|         ops = self.model.ops
 | |
| 
 | |
|         # NOTE This is doing fake batching, and should always get a list of one example
 | |
|         assert len(list(examples)) == 1, "Only fake batching is supported."
 | |
|         # starts and ends are gold starts and ends (Ints1d)
 | |
|         # span_scores is a Floats3d. What are the axes? mention x token x start/end
 | |
|         for eg in examples:
 | |
|             starts = []
 | |
|             ends = []
 | |
|             for key, sg in eg.reference.spans.items():
 | |
|                 if key.startswith(self.output_prefix):
 | |
|                     for mention in sg:
 | |
|                         starts.append(mention.start)
 | |
|                         ends.append(mention.end)
 | |
| 
 | |
|             starts = self.model.ops.xp.asarray(starts)
 | |
|             ends = self.model.ops.xp.asarray(ends)
 | |
|             start_scores = span_scores[:, :, 0]
 | |
|             end_scores = span_scores[:, :, 1]
 | |
|             n_classes = start_scores.shape[1]
 | |
|             start_probs = ops.softmax(start_scores, axis=1)
 | |
|             end_probs = ops.softmax(end_scores, axis=1)
 | |
|             start_targets = to_categorical(starts, n_classes)
 | |
|             end_targets = to_categorical(ends, n_classes)
 | |
|             start_grads = start_probs - start_targets
 | |
|             end_grads = end_probs - end_targets
 | |
|             grads = ops.xp.stack((start_grads, end_grads), axis=2)
 | |
|             loss = float((grads**2).sum())
 | |
|         return loss, grads
 | |
| 
 | |
|     def initialize(
 | |
|         self,
 | |
|         get_examples: Callable[[], Iterable[Example]],
 | |
|         *,
 | |
|         nlp: Optional[Language] = None,
 | |
|     ) -> None:
 | |
|         validate_get_examples(get_examples, "SpanPredictor.initialize")
 | |
| 
 | |
|         X = []
 | |
|         Y = []
 | |
|         for ex in islice(get_examples(), 2):
 | |
| 
 | |
|             if not ex.predicted.spans:
 | |
|                 # set placeholder for shape inference
 | |
|                 doc = ex.predicted
 | |
|                 assert len(doc) > 2, "Coreference requires at least two tokens"
 | |
|                 doc.spans[f"{self.input_prefix}_0"] = [doc[0:1], doc[1:2]]
 | |
|             X.append(ex.predicted)
 | |
|             Y.append(ex.reference)
 | |
| 
 | |
|         assert len(X) > 0, Errors.E923.format(name=self.name)
 | |
|         self.model.initialize(X=X, Y=Y)
 | |
| 
 | |
|         # Store the input dimensionality. nI and nO are not stored explicitly
 | |
|         # for PyTorch models. This makes it tricky to reconstruct the model
 | |
|         # during deserialization. So, besides storing the labels, we also
 | |
|         # store the number of inputs.
 | |
|         span_predictor = self.model.get_ref("span_predictor")
 | |
|         self.cfg["nI"] = span_predictor.get_dim("nI")
 | |
| 
 | |
|     def from_bytes(self, bytes_data, *, exclude=tuple()):
 | |
|         deserializers = {
 | |
|             "cfg": lambda b: self.cfg.update(srsly.json_loads(b)),
 | |
|             "vocab": lambda b: self.vocab.from_bytes(b, exclude=exclude),
 | |
|         }
 | |
|         from_bytes(bytes_data, deserializers, exclude)
 | |
| 
 | |
|         self._initialize_from_disk()
 | |
| 
 | |
|         model_deserializers = {
 | |
|             "model": lambda b: self.model.from_bytes(b),
 | |
|         }
 | |
|         from_bytes(bytes_data, model_deserializers, exclude)
 | |
| 
 | |
|         return self
 | |
| 
 | |
|     def from_disk(self, path, exclude=tuple()):
 | |
|         def load_model(p):
 | |
|             try:
 | |
|                 with open(p, "rb") as mfile:
 | |
|                     self.model.from_bytes(mfile.read())
 | |
|             except AttributeError:
 | |
|                 raise ValueError(Errors.E149) from None
 | |
| 
 | |
|         deserializers = {
 | |
|             "cfg": lambda p: self.cfg.update(srsly.read_json(p)),
 | |
|             "vocab": lambda p: self.vocab.from_disk(p, exclude=exclude),
 | |
|         }
 | |
|         from_disk(path, deserializers, exclude)
 | |
| 
 | |
|         self._initialize_from_disk()
 | |
| 
 | |
|         model_deserializers = {
 | |
|             "model": load_model,
 | |
|         }
 | |
|         from_disk(path, model_deserializers, exclude)
 | |
| 
 | |
|         return self
 | |
| 
 | |
|     def _initialize_from_disk(self):
 | |
|         # The PyTorch model is constructed lazily, so we need to
 | |
|         # explicitly initialize the model before deserialization.
 | |
|         model = self.model.get_ref("span_predictor")
 | |
|         if model.has_dim("nI") is None:
 | |
|             model.set_dim("nI", self.cfg["nI"])
 | |
|         self.model.initialize()
 |