mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 01:48:04 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			230 lines
		
	
	
		
			5.7 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			230 lines
		
	
	
		
			5.7 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
import pytest
 | 
						|
from spacy.lang.en import English
 | 
						|
import numpy as np
 | 
						|
import spacy
 | 
						|
from spacy.tokens import Doc
 | 
						|
from spacy.matcher import PhraseMatcher
 | 
						|
from spacy.tokens import DocBin
 | 
						|
from spacy.util import load_config_from_str
 | 
						|
from spacy.training import Example
 | 
						|
from spacy.training.initialize import init_nlp
 | 
						|
import pickle
 | 
						|
 | 
						|
from ..util import make_tempdir
 | 
						|
 | 
						|
 | 
						|
def test_issue6730(en_vocab):
 | 
						|
    """Ensure that the KB does not accept empty strings, but otherwise IO works fine."""
 | 
						|
    from spacy.kb import KnowledgeBase
 | 
						|
 | 
						|
    kb = KnowledgeBase(en_vocab, entity_vector_length=3)
 | 
						|
    kb.add_entity(entity="1", freq=148, entity_vector=[1, 2, 3])
 | 
						|
 | 
						|
    with pytest.raises(ValueError):
 | 
						|
        kb.add_alias(alias="", entities=["1"], probabilities=[0.4])
 | 
						|
    assert kb.contains_alias("") is False
 | 
						|
 | 
						|
    kb.add_alias(alias="x", entities=["1"], probabilities=[0.2])
 | 
						|
    kb.add_alias(alias="y", entities=["1"], probabilities=[0.1])
 | 
						|
 | 
						|
    with make_tempdir() as tmp_dir:
 | 
						|
        kb.to_disk(tmp_dir)
 | 
						|
        kb.from_disk(tmp_dir)
 | 
						|
    assert kb.get_size_aliases() == 2
 | 
						|
    assert set(kb.get_alias_strings()) == {"x", "y"}
 | 
						|
 | 
						|
 | 
						|
def test_issue6755(en_tokenizer):
 | 
						|
    doc = en_tokenizer("This is a magnificent sentence.")
 | 
						|
    span = doc[:0]
 | 
						|
    assert span.text_with_ws == ""
 | 
						|
    assert span.text == ""
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.parametrize(
 | 
						|
    "sentence, start_idx,end_idx,label",
 | 
						|
    [("Welcome to Mumbai, my friend", 11, 17, "GPE")],
 | 
						|
)
 | 
						|
def test_issue6815_1(sentence, start_idx, end_idx, label):
 | 
						|
    nlp = English()
 | 
						|
    doc = nlp(sentence)
 | 
						|
    span = doc[:].char_span(start_idx, end_idx, label=label)
 | 
						|
    assert span.label_ == label
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.parametrize(
 | 
						|
    "sentence, start_idx,end_idx,kb_id", [("Welcome to Mumbai, my friend", 11, 17, 5)]
 | 
						|
)
 | 
						|
def test_issue6815_2(sentence, start_idx, end_idx, kb_id):
 | 
						|
    nlp = English()
 | 
						|
    doc = nlp(sentence)
 | 
						|
    span = doc[:].char_span(start_idx, end_idx, kb_id=kb_id)
 | 
						|
    assert span.kb_id == kb_id
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.parametrize(
 | 
						|
    "sentence, start_idx,end_idx,vector",
 | 
						|
    [("Welcome to Mumbai, my friend", 11, 17, np.array([0.1, 0.2, 0.3]))],
 | 
						|
)
 | 
						|
def test_issue6815_3(sentence, start_idx, end_idx, vector):
 | 
						|
    nlp = English()
 | 
						|
    doc = nlp(sentence)
 | 
						|
    span = doc[:].char_span(start_idx, end_idx, vector=vector)
 | 
						|
    assert (span.vector == vector).all()
 | 
						|
 | 
						|
 | 
						|
def test_issue6839(en_vocab):
 | 
						|
    """Ensure that PhraseMatcher accepts Span as input"""
 | 
						|
    # fmt: off
 | 
						|
    words = ["I", "like", "Spans", "and", "Docs", "in", "my", "input", ",", "and", "nothing", "else", "."]
 | 
						|
    # fmt: on
 | 
						|
    doc = Doc(en_vocab, words=words)
 | 
						|
    span = doc[:8]
 | 
						|
    pattern = Doc(en_vocab, words=["Spans", "and", "Docs"])
 | 
						|
    matcher = PhraseMatcher(en_vocab)
 | 
						|
    matcher.add("SPACY", [pattern])
 | 
						|
    matches = matcher(span)
 | 
						|
    assert matches
 | 
						|
 | 
						|
 | 
						|
CONFIG_ISSUE_6908 = """
 | 
						|
[paths]
 | 
						|
train = "TRAIN_PLACEHOLDER"
 | 
						|
raw = null
 | 
						|
init_tok2vec = null
 | 
						|
vectors = null
 | 
						|
 | 
						|
[system]
 | 
						|
seed = 0
 | 
						|
gpu_allocator = null
 | 
						|
 | 
						|
[nlp]
 | 
						|
lang = "en"
 | 
						|
pipeline = ["textcat"]
 | 
						|
tokenizer = {"@tokenizers":"spacy.Tokenizer.v1"}
 | 
						|
disabled = []
 | 
						|
before_creation = null
 | 
						|
after_creation = null
 | 
						|
after_pipeline_creation = null
 | 
						|
batch_size = 1000
 | 
						|
 | 
						|
[components]
 | 
						|
 | 
						|
[components.textcat]
 | 
						|
factory = "TEXTCAT_PLACEHOLDER"
 | 
						|
 | 
						|
[corpora]
 | 
						|
 | 
						|
[corpora.train]
 | 
						|
@readers = "spacy.Corpus.v1"
 | 
						|
path = ${paths:train}
 | 
						|
 | 
						|
[corpora.dev]
 | 
						|
@readers = "spacy.Corpus.v1"
 | 
						|
path = ${paths:train}
 | 
						|
 | 
						|
 | 
						|
[training]
 | 
						|
train_corpus = "corpora.train"
 | 
						|
dev_corpus = "corpora.dev"
 | 
						|
seed = ${system.seed}
 | 
						|
gpu_allocator = ${system.gpu_allocator}
 | 
						|
frozen_components = []
 | 
						|
before_to_disk = null
 | 
						|
 | 
						|
[pretraining]
 | 
						|
 | 
						|
[initialize]
 | 
						|
vectors = ${paths.vectors}
 | 
						|
init_tok2vec = ${paths.init_tok2vec}
 | 
						|
vocab_data = null
 | 
						|
lookups = null
 | 
						|
before_init = null
 | 
						|
after_init = null
 | 
						|
 | 
						|
[initialize.components]
 | 
						|
 | 
						|
[initialize.components.textcat]
 | 
						|
labels = ['label1', 'label2']
 | 
						|
 | 
						|
[initialize.tokenizer]
 | 
						|
"""
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.parametrize(
 | 
						|
    "component_name", ["textcat", "textcat_multilabel"],
 | 
						|
)
 | 
						|
def test_issue6908(component_name):
 | 
						|
    """Test intializing textcat with labels in a list"""
 | 
						|
 | 
						|
    def create_data(out_file):
 | 
						|
        nlp = spacy.blank("en")
 | 
						|
        doc = nlp.make_doc("Some text")
 | 
						|
        doc.cats = {"label1": 0, "label2": 1}
 | 
						|
        out_data = DocBin(docs=[doc]).to_bytes()
 | 
						|
        with out_file.open("wb") as file_:
 | 
						|
            file_.write(out_data)
 | 
						|
 | 
						|
    with make_tempdir() as tmp_path:
 | 
						|
        train_path = tmp_path / "train.spacy"
 | 
						|
        create_data(train_path)
 | 
						|
        config_str = CONFIG_ISSUE_6908.replace("TEXTCAT_PLACEHOLDER", component_name)
 | 
						|
        config_str = config_str.replace("TRAIN_PLACEHOLDER", train_path.as_posix())
 | 
						|
        config = load_config_from_str(config_str)
 | 
						|
        init_nlp(config)
 | 
						|
 | 
						|
 | 
						|
CONFIG_ISSUE_6950 = """
 | 
						|
[nlp]
 | 
						|
lang = "en"
 | 
						|
pipeline = ["tok2vec", "tagger"]
 | 
						|
 | 
						|
[components]
 | 
						|
 | 
						|
[components.tok2vec]
 | 
						|
factory = "tok2vec"
 | 
						|
 | 
						|
[components.tok2vec.model]
 | 
						|
@architectures = "spacy.Tok2Vec.v1"
 | 
						|
 | 
						|
[components.tok2vec.model.embed]
 | 
						|
@architectures = "spacy.MultiHashEmbed.v1"
 | 
						|
width = ${components.tok2vec.model.encode:width}
 | 
						|
attrs = ["NORM","PREFIX","SUFFIX","SHAPE"]
 | 
						|
rows = [5000,2500,2500,2500]
 | 
						|
include_static_vectors = false
 | 
						|
 | 
						|
[components.tok2vec.model.encode]
 | 
						|
@architectures = "spacy.MaxoutWindowEncoder.v1"
 | 
						|
width = 96
 | 
						|
depth = 4
 | 
						|
window_size = 1
 | 
						|
maxout_pieces = 3
 | 
						|
 | 
						|
[components.ner]
 | 
						|
factory = "ner"
 | 
						|
 | 
						|
[components.tagger]
 | 
						|
factory = "tagger"
 | 
						|
 | 
						|
[components.tagger.model]
 | 
						|
@architectures = "spacy.Tagger.v1"
 | 
						|
nO = null
 | 
						|
 | 
						|
[components.tagger.model.tok2vec]
 | 
						|
@architectures = "spacy.Tok2VecListener.v1"
 | 
						|
width = ${components.tok2vec.model.encode:width}
 | 
						|
upstream = "*"
 | 
						|
"""
 | 
						|
 | 
						|
 | 
						|
def test_issue6950():
 | 
						|
    """Test that the nlp object with initialized tok2vec with listeners pickles
 | 
						|
    correctly (and doesn't have lambdas).
 | 
						|
    """
 | 
						|
    nlp = English.from_config(load_config_from_str(CONFIG_ISSUE_6950))
 | 
						|
    nlp.initialize(lambda: [Example.from_dict(nlp.make_doc("hello"), {"tags": ["V"]})])
 | 
						|
    pickle.dumps(nlp)
 | 
						|
    nlp("hello")
 | 
						|
    pickle.dumps(nlp)
 |