spaCy/spacy/ml/extract_ngrams.py
Sofie Van Landeghem 311133e579
Train textcat with config (#5143)
* bring back default build_text_classifier method

* remove _set_dims_ hack in favor of proper dim inference

* add tok2vec initialize to unit test

* small fixes

* add unit test for various textcat config settings

* logistic output layer does not have nO

* fix window_size setting

* proper fix

* fix W initialization

* Update textcat training example

* Use ml_datasets
* Convert training data to `Example` format
* Use `n_texts` to set proportionate dev size

* fix _init renaming on latest thinc

* avoid setting a non-existing dim

* update to thinc==8.0.0a2

* add BOW and CNN defaults for easy testing

* various experiments with train_textcat script, fix softmax activation in textcat bow

* allow textcat train script to work on other datasets as well

* have dataset as a parameter

* train textcat from config, with example config

* add config for training textcat

* formatting

* fix exclusive_classes

* fixing BOW for GPU

* bump thinc to 8.0.0a3 (not published yet so CI will fail)

* add in link_vectors_to_models which got deleted

Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
2020-03-29 19:40:36 +02:00

37 lines
1.2 KiB
Python

import numpy
from thinc.api import Model
from ..attrs import LOWER
def extract_ngrams(ngram_size, attr=LOWER) -> Model:
model = Model("extract_ngrams", forward)
model.attrs["ngram_size"] = ngram_size
model.attrs["attr"] = attr
return model
def forward(model, docs, is_train: bool):
batch_keys = []
batch_vals = []
for doc in docs:
unigrams = model.ops.asarray(doc.to_array([model.attrs["attr"]]))
ngrams = [unigrams]
for n in range(2, model.attrs["ngram_size"] + 1):
ngrams.append(model.ops.ngrams(n, unigrams))
keys = model.ops.xp.concatenate(ngrams)
keys, vals = model.ops.xp.unique(keys, return_counts=True)
batch_keys.append(keys)
batch_vals.append(vals)
# The dtype here matches what thinc is expecting -- which differs per
# platform (by int definition). This should be fixed once the problem
# is fixed on Thinc's side.
lengths = model.ops.asarray([arr.shape[0] for arr in batch_keys], dtype=numpy.int_)
batch_keys = model.ops.xp.concatenate(batch_keys)
batch_vals = model.ops.asarray(model.ops.xp.concatenate(batch_vals), dtype="f")
def backprop(dY):
return []
return (batch_keys, batch_vals, lengths), backprop