mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-01 12:56:29 +03:00
554df9ef20
* Rename all MDX file to `.mdx`
* Lock current node version (#11885)
* Apply Prettier (#11996)
* Minor website fixes (#11974) [ci skip]
* fix table
* Migrate to Next WEB-17 (#12005)
* Initial commit
* Run `npx create-next-app@13 next-blog`
* Install MDX packages
Following: 77b5f79a4d/packages/next-mdx/readme.md
* Add MDX to Next
* Allow Next to handle `.md` and `.mdx` files.
* Add VSCode extension recommendation
* Disabled TypeScript strict mode for now
* Add prettier
* Apply Prettier to all files
* Make sure to use correct Node version
* Add basic implementation for `MDXRemote`
* Add experimental Rust MDX parser
* Add `/public`
* Add SASS support
* Remove default pages and styling
* Convert to module
This allows to use `import/export` syntax
* Add import for custom components
* Add ability to load plugins
* Extract function
This will make the next commit easier to read
* Allow to handle directories for page creation
* Refactoring
* Allow to parse subfolders for pages
* Extract logic
* Redirect `index.mdx` to parent directory
* Disabled ESLint during builds
* Disabled typescript during build
* Remove Gatsby from `README.md`
* Rephrase Docker part of `README.md`
* Update project structure in `README.md`
* Move and rename plugins
* Update plugin for wrapping sections
* Add dependencies for plugin
* Use plugin
* Rename wrapper type
* Simplify unnessary adding of id to sections
The slugified section ids are useless, because they can not be referenced anywhere anyway. The navigation only works if the section has the same id as the heading.
* Add plugin for custom attributes on Markdown elements
* Add plugin to readd support for tables
* Add plugin to fix problem with wrapped images
For more details see this issue: https://github.com/mdx-js/mdx/issues/1798
* Add necessary meta data to pages
* Install necessary dependencies
* Remove outdated MDX handling
* Remove reliance on `InlineList`
* Use existing Remark components
* Remove unallowed heading
Before `h1` components where not overwritten and would never have worked and they aren't used anywhere either.
* Add missing components to MDX
* Add correct styling
* Fix broken list
* Fix broken CSS classes
* Implement layout
* Fix links
* Fix broken images
* Fix pattern image
* Fix heading attributes
* Rename heading attribute
`new` was causing some weird issue, so renaming it to `version`
* Update comment syntax in MDX
* Merge imports
* Fix markdown rendering inside components
* Add model pages
* Simplify anchors
* Fix default value for theme
* Add Universe index page
* Add Universe categories
* Add Universe projects
* Fix Next problem with copy
Next complains when the server renders something different then the client, therfor we move the differing logic to `useEffect`
* Fix improper component nesting
Next doesn't allow block elements inside a `<p>`
* Replace landing page MDX with page component
* Remove inlined iframe content
* Remove ability to inline HTML content in iFrames
* Remove MDX imports
* Fix problem with image inside link in MDX
* Escape character for MDX
* Fix unescaped characters in MDX
* Fix headings with logo
* Allow to export static HTML pages
* Add prebuild script
This command is automatically run by Next
* Replace `svg-loader` with `react-inlinesvg`
`svg-loader` is no longer maintained
* Fix ESLint `react-hooks/exhaustive-deps`
* Fix dropdowns
* Change code language from `cli` to `bash`
* Remove unnessary language `none`
* Fix invalid code language
`markdown_` with an underscore was used to basically turn of syntax highlighting, but using unknown languages know throws an error.
* Enable code blocks plugin
* Readd `InlineCode` component
MDX2 removed the `inlineCode` component
> The special component name `inlineCode` was removed, we recommend to use `pre` for the block version of code, and code for both the block and inline versions
Source: https://mdxjs.com/migrating/v2/#update-mdx-content
* Remove unused code
* Extract function to own file
* Fix code syntax highlighting
* Update syntax for code block meta data
* Remove unused prop
* Fix internal link recognition
There is a problem with regex between Node and browser, and since Next runs the component on both, this create an error.
`Prop `rel` did not match. Server: "null" Client: "noopener nofollow noreferrer"`
This simplifies the implementation and fixes the above error.
* Replace `react-helmet` with `next/head`
* Fix `className` problem for JSX component
* Fix broken bold markdown
* Convert file to `.mjs` to be used by Node process
* Add plugin to replace strings
* Fix custom table row styling
* Fix problem with `span` inside inline `code`
React doesn't allow a `span` inside an inline `code` element and throws an error in dev mode.
* Add `_document` to be able to customize `<html>` and `<body>`
* Add `lang="en"`
* Store Netlify settings in file
This way we don't need to update via Netlify UI, which can be tricky if changing build settings.
* Add sitemap
* Add Smartypants
* Add PWA support
* Add `manifest.webmanifest`
* Fix bug with anchor links after reloading
There was no need for the previous implementation, since the browser handles this nativly. Additional the manual scrolling into view was actually broken, because the heading would disappear behind the menu bar.
* Rename custom event
I was googeling for ages to find out what kind of event `inview` is, only to figure out it was a custom event with a name that sounds pretty much like a native one. 🫠
* Fix missing comment syntax highlighting
* Refactor Quickstart component
The previous implementation was hidding the irrelevant lines via data-props and dynamically generated CSS. This created problems with Next and was also hard to follow. CSS was used to do what React is supposed to handle.
The new implementation simplfy filters the list of children (React elements) via their props.
* Fix syntax highlighting for Training Quickstart
* Unify code rendering
* Improve error logging in Juniper
* Fix Juniper component
* Automatically generate "Read Next" link
* Add Plausible
* Use recent DocSearch component and adjust styling
* Fix images
* Turn of image optimization
> Image Optimization using Next.js' default loader is not compatible with `next export`.
We currently deploy to Netlify via `next export`
* Dont build pages starting with `_`
* Remove unused files
* Add Next plugin to Netlify
* Fix button layout
MDX automatically adds `p` tags around text on a new line and Prettier wants to put the text on a new line. Hacking with JSX string.
* Add 404 page
* Apply Prettier
* Update Prettier for `package.json`
Next sometimes wants to patch `package-lock.json`. The old Prettier setting indended with 4 spaces, but Next always indends with 2 spaces. Since `npm install` automatically uses the indendation from `package.json` for `package-lock.json` and to avoid the format switching back and forth, both files are now set to 2 spaces.
* Apply Next patch to `package-lock.json`
When starting the dev server Next would warn `warn - Found lockfile missing swc dependencies, patching...` and update the `package-lock.json`. These are the patched changes.
* fix link
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
* small backslash fixes
* adjust to new style
Co-authored-by: Marcus Blättermann <marcus@essenmitsosse.de>
331 lines
14 KiB
Plaintext
331 lines
14 KiB
Plaintext
---
|
|
title: Example
|
|
teaser: A training instance
|
|
tag: class
|
|
source: spacy/training/example.pyx
|
|
version: 3.0
|
|
---
|
|
|
|
An `Example` holds the information for one training instance. It stores two
|
|
`Doc` objects: one for holding the gold-standard reference data, and one for
|
|
holding the predictions of the pipeline. An
|
|
[`Alignment`](/api/example#alignment-object) object stores the alignment between
|
|
these two documents, as they can differ in tokenization.
|
|
|
|
## Example.\_\_init\_\_ {id="init",tag="method"}
|
|
|
|
Construct an `Example` object from the `predicted` document and the `reference`
|
|
document. If `alignment` is `None`, it will be initialized from the words in
|
|
both documents.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> from spacy.tokens import Doc
|
|
> from spacy.training import Example
|
|
> pred_words = ["Apply", "some", "sunscreen"]
|
|
> pred_spaces = [True, True, False]
|
|
> gold_words = ["Apply", "some", "sun", "screen"]
|
|
> gold_spaces = [True, True, False, False]
|
|
> gold_tags = ["VERB", "DET", "NOUN", "NOUN"]
|
|
> predicted = Doc(nlp.vocab, words=pred_words, spaces=pred_spaces)
|
|
> reference = Doc(nlp.vocab, words=gold_words, spaces=gold_spaces, tags=gold_tags)
|
|
> example = Example(predicted, reference)
|
|
> ```
|
|
|
|
| Name | Description |
|
|
| -------------- | ------------------------------------------------------------------------------------------------------------------------ |
|
|
| `predicted` | The document containing (partial) predictions. Cannot be `None`. ~~Doc~~ |
|
|
| `reference` | The document containing gold-standard annotations. Cannot be `None`. ~~Doc~~ |
|
|
| _keyword-only_ | |
|
|
| `alignment` | An object holding the alignment between the tokens of the `predicted` and `reference` documents. ~~Optional[Alignment]~~ |
|
|
|
|
## Example.from_dict {id="from_dict",tag="classmethod"}
|
|
|
|
Construct an `Example` object from the `predicted` document and the reference
|
|
annotations provided as a dictionary. For more details on the required format,
|
|
see the [training format documentation](/api/data-formats#dict-input).
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> from spacy.tokens import Doc
|
|
> from spacy.training import Example
|
|
>
|
|
> predicted = Doc(vocab, words=["Apply", "some", "sunscreen"])
|
|
> token_ref = ["Apply", "some", "sun", "screen"]
|
|
> tags_ref = ["VERB", "DET", "NOUN", "NOUN"]
|
|
> example = Example.from_dict(predicted, {"words": token_ref, "tags": tags_ref})
|
|
> ```
|
|
|
|
| Name | Description |
|
|
| -------------- | ----------------------------------------------------------------------------------- |
|
|
| `predicted` | The document containing (partial) predictions. Cannot be `None`. ~~Doc~~ |
|
|
| `example_dict` | The gold-standard annotations as a dictionary. Cannot be `None`. ~~Dict[str, Any]~~ |
|
|
| **RETURNS** | The newly constructed object. ~~Example~~ |
|
|
|
|
## Example.text {id="text",tag="property"}
|
|
|
|
The text of the `predicted` document in this `Example`.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> raw_text = example.text
|
|
> ```
|
|
|
|
| Name | Description |
|
|
| ----------- | --------------------------------------------- |
|
|
| **RETURNS** | The text of the `predicted` document. ~~str~~ |
|
|
|
|
## Example.predicted {id="predicted",tag="property"}
|
|
|
|
The `Doc` holding the predictions. Occasionally also referred to as `example.x`.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> docs = [eg.predicted for eg in examples]
|
|
> predictions, _ = model.begin_update(docs)
|
|
> set_annotations(docs, predictions)
|
|
> ```
|
|
|
|
| Name | Description |
|
|
| ----------- | ------------------------------------------------------ |
|
|
| **RETURNS** | The document containing (partial) predictions. ~~Doc~~ |
|
|
|
|
## Example.reference {id="reference",tag="property"}
|
|
|
|
The `Doc` holding the gold-standard annotations. Occasionally also referred to
|
|
as `example.y`.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> for i, eg in enumerate(examples):
|
|
> for j, label in enumerate(all_labels):
|
|
> gold_labels[i][j] = eg.reference.cats.get(label, 0.0)
|
|
> ```
|
|
|
|
| Name | Description |
|
|
| ----------- | ---------------------------------------------------------- |
|
|
| **RETURNS** | The document containing gold-standard annotations. ~~Doc~~ |
|
|
|
|
## Example.alignment {id="alignment",tag="property"}
|
|
|
|
The [`Alignment`](/api/example#alignment-object) object mapping the tokens of
|
|
the `predicted` document to those of the `reference` document.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> tokens_x = ["Apply", "some", "sunscreen"]
|
|
> x = Doc(vocab, words=tokens_x)
|
|
> tokens_y = ["Apply", "some", "sun", "screen"]
|
|
> example = Example.from_dict(x, {"words": tokens_y})
|
|
> alignment = example.alignment
|
|
> assert list(alignment.y2x.data) == [[0], [1], [2], [2]]
|
|
> ```
|
|
|
|
| Name | Description |
|
|
| ----------- | ---------------------------------------------------------------- |
|
|
| **RETURNS** | The document containing gold-standard annotations. ~~Alignment~~ |
|
|
|
|
## Example.get_aligned {id="get_aligned",tag="method"}
|
|
|
|
Get the aligned view of a certain token attribute, denoted by its int ID or
|
|
string name.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> predicted = Doc(vocab, words=["Apply", "some", "sunscreen"])
|
|
> token_ref = ["Apply", "some", "sun", "screen"]
|
|
> tags_ref = ["VERB", "DET", "NOUN", "NOUN"]
|
|
> example = Example.from_dict(predicted, {"words": token_ref, "tags": tags_ref})
|
|
> assert example.get_aligned("TAG", as_string=True) == ["VERB", "DET", "NOUN"]
|
|
> ```
|
|
|
|
| Name | Description |
|
|
| ----------- | -------------------------------------------------------------------------------------------------- |
|
|
| `field` | Attribute ID or string name. ~~Union[int, str]~~ |
|
|
| `as_string` | Whether or not to return the list of values as strings. Defaults to `False`. ~~bool~~ |
|
|
| **RETURNS** | List of integer values, or string values if `as_string` is `True`. ~~Union[List[int], List[str]]~~ |
|
|
|
|
## Example.get_aligned_parse {id="get_aligned_parse",tag="method"}
|
|
|
|
Get the aligned view of the dependency parse. If `projectivize` is set to
|
|
`True`, non-projective dependency trees are made projective through the
|
|
Pseudo-Projective Dependency Parsing algorithm by Nivre and Nilsson (2005).
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> doc = nlp("He pretty quickly walks away")
|
|
> example = Example.from_dict(doc, {"heads": [3, 2, 3, 0, 2]})
|
|
> proj_heads, proj_labels = example.get_aligned_parse(projectivize=True)
|
|
> assert proj_heads == [3, 2, 3, 0, 3]
|
|
> ```
|
|
|
|
| Name | Description |
|
|
| -------------- | -------------------------------------------------------------------------------------------------- |
|
|
| `projectivize` | Whether or not to projectivize the dependency trees. Defaults to `True`. ~~bool~~ |
|
|
| **RETURNS** | List of integer values, or string values if `as_string` is `True`. ~~Union[List[int], List[str]]~~ |
|
|
|
|
## Example.get_aligned_ner {id="get_aligned_ner",tag="method"}
|
|
|
|
Get the aligned view of the NER
|
|
[BILUO](/usage/linguistic-features#accessing-ner) tags.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> words = ["Mrs", "Smith", "flew", "to", "New York"]
|
|
> doc = Doc(en_vocab, words=words)
|
|
> entities = [(0, 9, "PERSON"), (18, 26, "LOC")]
|
|
> gold_words = ["Mrs Smith", "flew", "to", "New", "York"]
|
|
> example = Example.from_dict(doc, {"words": gold_words, "entities": entities})
|
|
> ner_tags = example.get_aligned_ner()
|
|
> assert ner_tags == ["B-PERSON", "L-PERSON", "O", "O", "U-LOC"]
|
|
> ```
|
|
|
|
| Name | Description |
|
|
| ----------- | ------------------------------------------------------------------------------------------------- |
|
|
| **RETURNS** | List of BILUO values, denoting whether tokens are part of an NER annotation or not. ~~List[str]~~ |
|
|
|
|
## Example.get_aligned_spans_y2x {id="get_aligned_spans_y2x",tag="method"}
|
|
|
|
Get the aligned view of any set of [`Span`](/api/span) objects defined over
|
|
[`Example.reference`](/api/example#reference). The resulting span indices will
|
|
align to the tokenization in [`Example.predicted`](/api/example#predicted).
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> words = ["Mr and Mrs Smith", "flew", "to", "New York"]
|
|
> doc = Doc(en_vocab, words=words)
|
|
> entities = [(0, 16, "PERSON")]
|
|
> tokens_ref = ["Mr", "and", "Mrs", "Smith", "flew", "to", "New", "York"]
|
|
> example = Example.from_dict(doc, {"words": tokens_ref, "entities": entities})
|
|
> ents_ref = example.reference.ents
|
|
> assert [(ent.start, ent.end) for ent in ents_ref] == [(0, 4)]
|
|
> ents_y2x = example.get_aligned_spans_y2x(ents_ref)
|
|
> assert [(ent.start, ent.end) for ent in ents_y2x] == [(0, 1)]
|
|
> ```
|
|
|
|
| Name | Description |
|
|
| --------------- | -------------------------------------------------------------------------------------------- |
|
|
| `y_spans` | `Span` objects aligned to the tokenization of `reference`. ~~Iterable[Span]~~ |
|
|
| `allow_overlap` | Whether the resulting `Span` objects may overlap or not. Set to `False` by default. ~~bool~~ |
|
|
| **RETURNS** | `Span` objects aligned to the tokenization of `predicted`. ~~List[Span]~~ |
|
|
|
|
## Example.get_aligned_spans_x2y {id="get_aligned_spans_x2y",tag="method"}
|
|
|
|
Get the aligned view of any set of [`Span`](/api/span) objects defined over
|
|
[`Example.predicted`](/api/example#predicted). The resulting span indices will
|
|
align to the tokenization in [`Example.reference`](/api/example#reference). This
|
|
method is particularly useful to assess the accuracy of predicted entities
|
|
against the original gold-standard annotation.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> nlp.add_pipe("my_ner")
|
|
> doc = nlp("Mr and Mrs Smith flew to New York")
|
|
> tokens_ref = ["Mr and Mrs", "Smith", "flew", "to", "New York"]
|
|
> example = Example.from_dict(doc, {"words": tokens_ref})
|
|
> ents_pred = example.predicted.ents
|
|
> # Assume the NER model has found "Mr and Mrs Smith" as a named entity
|
|
> assert [(ent.start, ent.end) for ent in ents_pred] == [(0, 4)]
|
|
> ents_x2y = example.get_aligned_spans_x2y(ents_pred)
|
|
> assert [(ent.start, ent.end) for ent in ents_x2y] == [(0, 2)]
|
|
> ```
|
|
|
|
| Name | Description |
|
|
| --------------- | -------------------------------------------------------------------------------------------- |
|
|
| `x_spans` | `Span` objects aligned to the tokenization of `predicted`. ~~Iterable[Span]~~ |
|
|
| `allow_overlap` | Whether the resulting `Span` objects may overlap or not. Set to `False` by default. ~~bool~~ |
|
|
| **RETURNS** | `Span` objects aligned to the tokenization of `reference`. ~~List[Span]~~ |
|
|
|
|
## Example.to_dict {id="to_dict",tag="method"}
|
|
|
|
Return a [dictionary representation](/api/data-formats#dict-input) of the
|
|
reference annotation contained in this `Example`.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> eg_dict = example.to_dict()
|
|
> ```
|
|
|
|
| Name | Description |
|
|
| ----------- | ------------------------------------------------------------------------- |
|
|
| **RETURNS** | Dictionary representation of the reference annotation. ~~Dict[str, Any]~~ |
|
|
|
|
## Example.split_sents {id="split_sents",tag="method"}
|
|
|
|
Split one `Example` into multiple `Example` objects, one for each sentence.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> doc = nlp("I went yesterday had lots of fun")
|
|
> tokens_ref = ["I", "went", "yesterday", "had", "lots", "of", "fun"]
|
|
> sents_ref = [True, False, False, True, False, False, False]
|
|
> example = Example.from_dict(doc, {"words": tokens_ref, "sent_starts": sents_ref})
|
|
> split_examples = example.split_sents()
|
|
> assert split_examples[0].text == "I went yesterday "
|
|
> assert split_examples[1].text == "had lots of fun"
|
|
> ```
|
|
|
|
| Name | Description |
|
|
| ----------- | ---------------------------------------------------------------------------- |
|
|
| **RETURNS** | List of `Example` objects, one for each original sentence. ~~List[Example]~~ |
|
|
|
|
## Alignment {id="alignment-object",version="3"}
|
|
|
|
Calculate alignment tables between two tokenizations.
|
|
|
|
### Alignment attributes {id="alignment-attributes"}
|
|
|
|
Alignment attributes are managed using `AlignmentArray`, which is a simplified
|
|
version of Thinc's [Ragged](https://thinc.ai/docs/api-types#ragged) type that
|
|
only supports the `data` and `length` attributes.
|
|
|
|
| Name | Description |
|
|
| ----- | ------------------------------------------------------------------------------------- |
|
|
| `x2y` | The `AlignmentArray` object holding the alignment from `x` to `y`. ~~AlignmentArray~~ |
|
|
| `y2x` | The `AlignmentArray` object holding the alignment from `y` to `x`. ~~AlignmentArray~~ |
|
|
|
|
<Infobox title="Important note" variant="warning">
|
|
|
|
The current implementation of the alignment algorithm assumes that both
|
|
tokenizations add up to the same string. For example, you'll be able to align
|
|
`["I", "'", "m"]` and `["I", "'m"]`, which both add up to `"I'm"`, but not
|
|
`["I", "'m"]` and `["I", "am"]`.
|
|
|
|
</Infobox>
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> from spacy.training import Alignment
|
|
>
|
|
> bert_tokens = ["obama", "'", "s", "podcast"]
|
|
> spacy_tokens = ["obama", "'s", "podcast"]
|
|
> alignment = Alignment.from_strings(bert_tokens, spacy_tokens)
|
|
> a2b = alignment.x2y
|
|
> assert list(a2b.data) == [0, 1, 1, 2]
|
|
> ```
|
|
>
|
|
> If `a2b.data[1] == a2b.data[2] == 1`, that means that `A[1]` (`"'"`) and
|
|
> `A[2]` (`"s"`) both align to `B[1]` (`"'s"`).
|
|
|
|
### Alignment.from_strings {id="classmethod",tag="function"}
|
|
|
|
| Name | Description |
|
|
| ----------- | ------------------------------------------------------------- |
|
|
| `A` | String values of candidate tokens to align. ~~List[str]~~ |
|
|
| `B` | String values of reference tokens to align. ~~List[str]~~ |
|
|
| **RETURNS** | An `Alignment` object describing the alignment. ~~Alignment~~ |
|