mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-01 12:56:29 +03:00
554df9ef20
* Rename all MDX file to `.mdx`
* Lock current node version (#11885)
* Apply Prettier (#11996)
* Minor website fixes (#11974) [ci skip]
* fix table
* Migrate to Next WEB-17 (#12005)
* Initial commit
* Run `npx create-next-app@13 next-blog`
* Install MDX packages
Following: 77b5f79a4d/packages/next-mdx/readme.md
* Add MDX to Next
* Allow Next to handle `.md` and `.mdx` files.
* Add VSCode extension recommendation
* Disabled TypeScript strict mode for now
* Add prettier
* Apply Prettier to all files
* Make sure to use correct Node version
* Add basic implementation for `MDXRemote`
* Add experimental Rust MDX parser
* Add `/public`
* Add SASS support
* Remove default pages and styling
* Convert to module
This allows to use `import/export` syntax
* Add import for custom components
* Add ability to load plugins
* Extract function
This will make the next commit easier to read
* Allow to handle directories for page creation
* Refactoring
* Allow to parse subfolders for pages
* Extract logic
* Redirect `index.mdx` to parent directory
* Disabled ESLint during builds
* Disabled typescript during build
* Remove Gatsby from `README.md`
* Rephrase Docker part of `README.md`
* Update project structure in `README.md`
* Move and rename plugins
* Update plugin for wrapping sections
* Add dependencies for plugin
* Use plugin
* Rename wrapper type
* Simplify unnessary adding of id to sections
The slugified section ids are useless, because they can not be referenced anywhere anyway. The navigation only works if the section has the same id as the heading.
* Add plugin for custom attributes on Markdown elements
* Add plugin to readd support for tables
* Add plugin to fix problem with wrapped images
For more details see this issue: https://github.com/mdx-js/mdx/issues/1798
* Add necessary meta data to pages
* Install necessary dependencies
* Remove outdated MDX handling
* Remove reliance on `InlineList`
* Use existing Remark components
* Remove unallowed heading
Before `h1` components where not overwritten and would never have worked and they aren't used anywhere either.
* Add missing components to MDX
* Add correct styling
* Fix broken list
* Fix broken CSS classes
* Implement layout
* Fix links
* Fix broken images
* Fix pattern image
* Fix heading attributes
* Rename heading attribute
`new` was causing some weird issue, so renaming it to `version`
* Update comment syntax in MDX
* Merge imports
* Fix markdown rendering inside components
* Add model pages
* Simplify anchors
* Fix default value for theme
* Add Universe index page
* Add Universe categories
* Add Universe projects
* Fix Next problem with copy
Next complains when the server renders something different then the client, therfor we move the differing logic to `useEffect`
* Fix improper component nesting
Next doesn't allow block elements inside a `<p>`
* Replace landing page MDX with page component
* Remove inlined iframe content
* Remove ability to inline HTML content in iFrames
* Remove MDX imports
* Fix problem with image inside link in MDX
* Escape character for MDX
* Fix unescaped characters in MDX
* Fix headings with logo
* Allow to export static HTML pages
* Add prebuild script
This command is automatically run by Next
* Replace `svg-loader` with `react-inlinesvg`
`svg-loader` is no longer maintained
* Fix ESLint `react-hooks/exhaustive-deps`
* Fix dropdowns
* Change code language from `cli` to `bash`
* Remove unnessary language `none`
* Fix invalid code language
`markdown_` with an underscore was used to basically turn of syntax highlighting, but using unknown languages know throws an error.
* Enable code blocks plugin
* Readd `InlineCode` component
MDX2 removed the `inlineCode` component
> The special component name `inlineCode` was removed, we recommend to use `pre` for the block version of code, and code for both the block and inline versions
Source: https://mdxjs.com/migrating/v2/#update-mdx-content
* Remove unused code
* Extract function to own file
* Fix code syntax highlighting
* Update syntax for code block meta data
* Remove unused prop
* Fix internal link recognition
There is a problem with regex between Node and browser, and since Next runs the component on both, this create an error.
`Prop `rel` did not match. Server: "null" Client: "noopener nofollow noreferrer"`
This simplifies the implementation and fixes the above error.
* Replace `react-helmet` with `next/head`
* Fix `className` problem for JSX component
* Fix broken bold markdown
* Convert file to `.mjs` to be used by Node process
* Add plugin to replace strings
* Fix custom table row styling
* Fix problem with `span` inside inline `code`
React doesn't allow a `span` inside an inline `code` element and throws an error in dev mode.
* Add `_document` to be able to customize `<html>` and `<body>`
* Add `lang="en"`
* Store Netlify settings in file
This way we don't need to update via Netlify UI, which can be tricky if changing build settings.
* Add sitemap
* Add Smartypants
* Add PWA support
* Add `manifest.webmanifest`
* Fix bug with anchor links after reloading
There was no need for the previous implementation, since the browser handles this nativly. Additional the manual scrolling into view was actually broken, because the heading would disappear behind the menu bar.
* Rename custom event
I was googeling for ages to find out what kind of event `inview` is, only to figure out it was a custom event with a name that sounds pretty much like a native one. 🫠
* Fix missing comment syntax highlighting
* Refactor Quickstart component
The previous implementation was hidding the irrelevant lines via data-props and dynamically generated CSS. This created problems with Next and was also hard to follow. CSS was used to do what React is supposed to handle.
The new implementation simplfy filters the list of children (React elements) via their props.
* Fix syntax highlighting for Training Quickstart
* Unify code rendering
* Improve error logging in Juniper
* Fix Juniper component
* Automatically generate "Read Next" link
* Add Plausible
* Use recent DocSearch component and adjust styling
* Fix images
* Turn of image optimization
> Image Optimization using Next.js' default loader is not compatible with `next export`.
We currently deploy to Netlify via `next export`
* Dont build pages starting with `_`
* Remove unused files
* Add Next plugin to Netlify
* Fix button layout
MDX automatically adds `p` tags around text on a new line and Prettier wants to put the text on a new line. Hacking with JSX string.
* Add 404 page
* Apply Prettier
* Update Prettier for `package.json`
Next sometimes wants to patch `package-lock.json`. The old Prettier setting indended with 4 spaces, but Next always indends with 2 spaces. Since `npm install` automatically uses the indendation from `package.json` for `package-lock.json` and to avoid the format switching back and forth, both files are now set to 2 spaces.
* Apply Next patch to `package-lock.json`
When starting the dev server Next would warn `warn - Found lockfile missing swc dependencies, patching...` and update the `package-lock.json`. These are the patched changes.
* fix link
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
* small backslash fixes
* adjust to new style
Co-authored-by: Marcus Blättermann <marcus@essenmitsosse.de>
461 lines
20 KiB
Plaintext
461 lines
20 KiB
Plaintext
---
|
||
title: Vectors
|
||
teaser: Store, save and load word vectors
|
||
tag: class
|
||
source: spacy/vectors.pyx
|
||
version: 2
|
||
---
|
||
|
||
Vectors data is kept in the `Vectors.data` attribute, which should be an
|
||
instance of `numpy.ndarray` (for CPU vectors) or `cupy.ndarray` (for GPU
|
||
vectors).
|
||
|
||
As of spaCy v3.2, `Vectors` supports two types of vector tables:
|
||
|
||
- `default`: A standard vector table (as in spaCy v3.1 and earlier) where each
|
||
key is mapped to one row in the vector table. Multiple keys can be mapped to
|
||
the same vector, and not all of the rows in the table need to be assigned – so
|
||
`vectors.n_keys` may be greater or smaller than `vectors.shape[0]`.
|
||
- `floret`: Only supports vectors trained with
|
||
[floret](https://github.com/explosion/floret), an extended version of
|
||
[fastText](https://fasttext.cc) that produces compact vector tables by
|
||
combining fastText's subword ngrams with Bloom embeddings. The compact tables
|
||
are similar to the [`HashEmbed`](https://thinc.ai/docs/api-layers#hashembed)
|
||
embeddings already used in many spaCy components. Each word is represented as
|
||
the sum of one or more rows as determined by the settings related to character
|
||
ngrams and the hash table.
|
||
|
||
## Vectors.\_\_init\_\_ {id="init",tag="method"}
|
||
|
||
Create a new vector store. With the default mode, you can set the vector values
|
||
and keys directly on initialization, or supply a `shape` keyword argument to
|
||
create an empty table you can add vectors to later. In floret mode, the complete
|
||
vector data and settings must be provided on initialization and cannot be
|
||
modified later.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> from spacy.vectors import Vectors
|
||
>
|
||
> empty_vectors = Vectors(shape=(10000, 300))
|
||
>
|
||
> data = numpy.zeros((3, 300), dtype='f')
|
||
> keys = ["cat", "dog", "rat"]
|
||
> vectors = Vectors(data=data, keys=keys)
|
||
> ```
|
||
|
||
| Name | Description |
|
||
| ----------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||
| _keyword-only_ | |
|
||
| `strings` | The string store. A new string store is created if one is not provided. Defaults to `None`. ~~Optional[StringStore]~~ |
|
||
| `shape` | Size of the table as `(n_entries, n_columns)`, the number of entries and number of columns. Not required if you're initializing the object with `data` and `keys`. ~~Tuple[int, int]~~ |
|
||
| `data` | The vector data. ~~numpy.ndarray[ndim=2, dtype=float32]~~ |
|
||
| `keys` | A sequence of keys aligned with the data. ~~Iterable[Union[str, int]]~~ |
|
||
| `name` | A name to identify the vectors table. ~~str~~ |
|
||
| `mode` <Tag variant="new">3.2</Tag> | Vectors mode: `"default"` or [`"floret"`](https://github.com/explosion/floret) (default: `"default"`). ~~str~~ |
|
||
| `minn` <Tag variant="new">3.2</Tag> | The floret char ngram minn (default: `0`). ~~int~~ |
|
||
| `maxn` <Tag variant="new">3.2</Tag> | The floret char ngram maxn (default: `0`). ~~int~~ |
|
||
| `hash_count` <Tag variant="new">3.2</Tag> | The floret hash count. Supported values: 1--4 (default: `1`). ~~int~~ |
|
||
| `hash_seed` <Tag variant="new">3.2</Tag> | The floret hash seed (default: `0`). ~~int~~ |
|
||
| `bow` <Tag variant="new">3.2</Tag> | The floret BOW string (default: `"<"`). ~~str~~ |
|
||
| `eow` <Tag variant="new">3.2</Tag> | The floret EOW string (default: `">"`). ~~str~~ |
|
||
|
||
## Vectors.\_\_getitem\_\_ {id="getitem",tag="method"}
|
||
|
||
Get a vector by key. If the key is not found in the table, a `KeyError` is
|
||
raised.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> cat_id = nlp.vocab.strings["cat"]
|
||
> cat_vector = nlp.vocab.vectors[cat_id]
|
||
> assert cat_vector == nlp.vocab["cat"].vector
|
||
> ```
|
||
|
||
| Name | Description |
|
||
| ----------- | ---------------------------------------------------------------- |
|
||
| `key` | The key to get the vector for. ~~Union[int, str]~~ |
|
||
| **RETURNS** | The vector for the key. ~~numpy.ndarray[ndim=1, dtype=float32]~~ |
|
||
|
||
## Vectors.\_\_setitem\_\_ {id="setitem",tag="method"}
|
||
|
||
Set a vector for the given key. Not supported for `floret` mode.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> cat_id = nlp.vocab.strings["cat"]
|
||
> vector = numpy.random.uniform(-1, 1, (300,))
|
||
> nlp.vocab.vectors[cat_id] = vector
|
||
> ```
|
||
|
||
| Name | Description |
|
||
| -------- | ----------------------------------------------------------- |
|
||
| `key` | The key to set the vector for. ~~int~~ |
|
||
| `vector` | The vector to set. ~~numpy.ndarray[ndim=1, dtype=float32]~~ |
|
||
|
||
## Vectors.\_\_iter\_\_ {id="iter",tag="method"}
|
||
|
||
Iterate over the keys in the table. In `floret` mode, the keys table is not
|
||
used.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> for key in nlp.vocab.vectors:
|
||
> print(key, nlp.vocab.strings[key])
|
||
> ```
|
||
|
||
| Name | Description |
|
||
| ---------- | --------------------------- |
|
||
| **YIELDS** | A key in the table. ~~int~~ |
|
||
|
||
## Vectors.\_\_len\_\_ {id="len",tag="method"}
|
||
|
||
Return the number of vectors in the table.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> vectors = Vectors(shape=(3, 300))
|
||
> assert len(vectors) == 3
|
||
> ```
|
||
|
||
| Name | Description |
|
||
| ----------- | ------------------------------------------- |
|
||
| **RETURNS** | The number of vectors in the table. ~~int~~ |
|
||
|
||
## Vectors.\_\_contains\_\_ {id="contains",tag="method"}
|
||
|
||
Check whether a key has been mapped to a vector entry in the table. In `floret`
|
||
mode, returns `True` for all keys.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> cat_id = nlp.vocab.strings["cat"]
|
||
> nlp.vocab.vectors.add(cat_id, numpy.random.uniform(-1, 1, (300,)))
|
||
> assert cat_id in vectors
|
||
> ```
|
||
|
||
| Name | Description |
|
||
| ----------- | -------------------------------------------- |
|
||
| `key` | The key to check. ~~int~~ |
|
||
| **RETURNS** | Whether the key has a vector entry. ~~bool~~ |
|
||
|
||
## Vectors.add {id="add",tag="method"}
|
||
|
||
Add a key to the table, optionally setting a vector value as well. Keys can be
|
||
mapped to an existing vector by setting `row`, or a new vector can be added. Not
|
||
supported for `floret` mode.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> vector = numpy.random.uniform(-1, 1, (300,))
|
||
> cat_id = nlp.vocab.strings["cat"]
|
||
> nlp.vocab.vectors.add(cat_id, vector=vector)
|
||
> nlp.vocab.vectors.add("dog", row=0)
|
||
> ```
|
||
|
||
| Name | Description |
|
||
| -------------- | ------------------------------------------------------------------------------- |
|
||
| `key` | The key to add. ~~Union[str, int]~~ |
|
||
| _keyword-only_ | |
|
||
| `vector` | An optional vector to add for the key. ~~numpy.ndarray[ndim=1, dtype=float32]~~ |
|
||
| `row` | An optional row number of a vector to map the key to. ~~int~~ |
|
||
| **RETURNS** | The row the vector was added to. ~~int~~ |
|
||
|
||
## Vectors.resize {id="resize",tag="method"}
|
||
|
||
Resize the underlying vectors array. If `inplace=True`, the memory is
|
||
reallocated. This may cause other references to the data to become invalid, so
|
||
only use `inplace=True` if you're sure that's what you want. If the number of
|
||
vectors is reduced, keys mapped to rows that have been deleted are removed.
|
||
These removed items are returned as a list of `(key, row)` tuples. Not supported
|
||
for `floret` mode.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> removed = nlp.vocab.vectors.resize((10000, 300))
|
||
> ```
|
||
|
||
| Name | Description |
|
||
| ----------- | ---------------------------------------------------------------------------------------- |
|
||
| `shape` | A `(rows, dims)` tuple describing the number of rows and dimensions. ~~Tuple[int, int]~~ |
|
||
| `inplace` | Reallocate the memory. ~~bool~~ |
|
||
| **RETURNS** | The removed items as a list of `(key, row)` tuples. ~~List[Tuple[int, int]]~~ |
|
||
|
||
## Vectors.keys {id="keys",tag="method"}
|
||
|
||
A sequence of the keys in the table. In `floret` mode, the keys table is not
|
||
used.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> for key in nlp.vocab.vectors.keys():
|
||
> print(key, nlp.vocab.strings[key])
|
||
> ```
|
||
|
||
| Name | Description |
|
||
| ----------- | --------------------------- |
|
||
| **RETURNS** | The keys. ~~Iterable[int]~~ |
|
||
|
||
## Vectors.values {id="values",tag="method"}
|
||
|
||
Iterate over vectors that have been assigned to at least one key. Note that some
|
||
vectors may be unassigned, so the number of vectors returned may be less than
|
||
the length of the vectors table. In `floret` mode, the keys table is not used.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> for vector in nlp.vocab.vectors.values():
|
||
> print(vector)
|
||
> ```
|
||
|
||
| Name | Description |
|
||
| ---------- | --------------------------------------------------------------- |
|
||
| **YIELDS** | A vector in the table. ~~numpy.ndarray[ndim=1, dtype=float32]~~ |
|
||
|
||
## Vectors.items {id="items",tag="method"}
|
||
|
||
Iterate over `(key, vector)` pairs, in order. In `floret` mode, the keys table
|
||
is empty.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> for key, vector in nlp.vocab.vectors.items():
|
||
> print(key, nlp.vocab.strings[key], vector)
|
||
> ```
|
||
|
||
| Name | Description |
|
||
| ---------- | ------------------------------------------------------------------------------------- |
|
||
| **YIELDS** | `(key, vector)` pairs, in order. ~~Tuple[int, numpy.ndarray[ndim=1, dtype=float32]]~~ |
|
||
|
||
## Vectors.find {id="find",tag="method"}
|
||
|
||
Look up one or more keys by row, or vice versa. Not supported for `floret` mode.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> row = nlp.vocab.vectors.find(key="cat")
|
||
> rows = nlp.vocab.vectors.find(keys=["cat", "dog"])
|
||
> key = nlp.vocab.vectors.find(row=256)
|
||
> keys = nlp.vocab.vectors.find(rows=[18, 256, 985])
|
||
> ```
|
||
|
||
| Name | Description |
|
||
| -------------- | -------------------------------------------------------------------------------------------- |
|
||
| _keyword-only_ | |
|
||
| `key` | Find the row that the given key points to. Returns int, `-1` if missing. ~~Union[str, int]~~ |
|
||
| `keys` | Find rows that the keys point to. Returns `numpy.ndarray`. ~~Iterable[Union[str, int]]~~ |
|
||
| `row` | Find the first key that points to the row. Returns integer. ~~int~~ |
|
||
| `rows` | Find the keys that point to the rows. Returns `numpy.ndarray`. ~~Iterable[int]~~ |
|
||
| **RETURNS** | The requested key, keys, row or rows. ~~Union[int, numpy.ndarray[ndim=1, dtype=float32]]~~ |
|
||
|
||
## Vectors.shape {id="shape",tag="property"}
|
||
|
||
Get `(rows, dims)` tuples of number of rows and number of dimensions in the
|
||
vector table.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> vectors = Vectors(shape(1, 300))
|
||
> vectors.add("cat", numpy.random.uniform(-1, 1, (300,)))
|
||
> rows, dims = vectors.shape
|
||
> assert rows == 1
|
||
> assert dims == 300
|
||
> ```
|
||
|
||
| Name | Description |
|
||
| ----------- | ------------------------------------------ |
|
||
| **RETURNS** | A `(rows, dims)` pair. ~~Tuple[int, int]~~ |
|
||
|
||
## Vectors.size {id="size",tag="property"}
|
||
|
||
The vector size, i.e. `rows * dims`.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> vectors = Vectors(shape=(500, 300))
|
||
> assert vectors.size == 150000
|
||
> ```
|
||
|
||
| Name | Description |
|
||
| ----------- | ------------------------ |
|
||
| **RETURNS** | The vector size. ~~int~~ |
|
||
|
||
## Vectors.is_full {id="is_full",tag="property"}
|
||
|
||
Whether the vectors table is full and has no slots are available for new keys.
|
||
If a table is full, it can be resized using
|
||
[`Vectors.resize`](/api/vectors#resize). In `floret` mode, the table is always
|
||
full and cannot be resized.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> vectors = Vectors(shape=(1, 300))
|
||
> vectors.add("cat", numpy.random.uniform(-1, 1, (300,)))
|
||
> assert vectors.is_full
|
||
> ```
|
||
|
||
| Name | Description |
|
||
| ----------- | ------------------------------------------- |
|
||
| **RETURNS** | Whether the vectors table is full. ~~bool~~ |
|
||
|
||
## Vectors.n_keys {id="n_keys",tag="property"}
|
||
|
||
Get the number of keys in the table. Note that this is the number of _all_ keys,
|
||
not just unique vectors. If several keys are mapped to the same vectors, they
|
||
will be counted individually. In `floret` mode, the keys table is not used.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> vectors = Vectors(shape=(10, 300))
|
||
> assert len(vectors) == 10
|
||
> assert vectors.n_keys == 0
|
||
> ```
|
||
|
||
| Name | Description |
|
||
| ----------- | ----------------------------------------------------------------------------- |
|
||
| **RETURNS** | The number of all keys in the table. Returns `-1` for floret vectors. ~~int~~ |
|
||
|
||
## Vectors.most_similar {id="most_similar",tag="method"}
|
||
|
||
For each of the given vectors, find the `n` most similar entries to it by
|
||
cosine. Queries are by vector. Results are returned as a
|
||
`(keys, best_rows, scores)` tuple. If `queries` is large, the calculations are
|
||
performed in chunks to avoid consuming too much memory. You can set the
|
||
`batch_size` to control the size/space trade-off during the calculations. Not
|
||
supported for `floret` mode.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> queries = numpy.asarray([numpy.random.uniform(-1, 1, (300,))])
|
||
> most_similar = nlp.vocab.vectors.most_similar(queries, n=10)
|
||
> ```
|
||
|
||
| Name | Description |
|
||
| -------------- | ----------------------------------------------------------------------------------------------------------------------- |
|
||
| `queries` | An array with one or more vectors. ~~numpy.ndarray~~ |
|
||
| _keyword-only_ | |
|
||
| `batch_size` | The batch size to use. Default to `1024`. ~~int~~ |
|
||
| `n` | The number of entries to return for each query. Defaults to `1`. ~~int~~ |
|
||
| `sort` | Whether to sort the entries returned by score. Defaults to `True`. ~~bool~~ |
|
||
| **RETURNS** | The most similar entries as a `(keys, best_rows, scores)` tuple. ~~Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray]~~ |
|
||
|
||
## Vectors.get_batch {id="get_batch",tag="method",version="3.2"}
|
||
|
||
Get the vectors for the provided keys efficiently as a batch.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> words = ["cat", "dog"]
|
||
> vectors = nlp.vocab.vectors.get_batch(words)
|
||
> ```
|
||
|
||
| Name | Description |
|
||
| ------ | --------------------------------------- |
|
||
| `keys` | The keys. ~~Iterable[Union[int, str]]~~ |
|
||
|
||
## Vectors.to_ops {id="to_ops",tag="method"}
|
||
|
||
Change the embedding matrix to use different Thinc ops.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> from thinc.api import NumpyOps
|
||
>
|
||
> vectors.to_ops(NumpyOps())
|
||
>
|
||
> ```
|
||
|
||
| Name | Description |
|
||
| ----- | -------------------------------------------------------- |
|
||
| `ops` | The Thinc ops to switch the embedding matrix to. ~~Ops~~ |
|
||
|
||
## Vectors.to_disk {id="to_disk",tag="method"}
|
||
|
||
Save the current state to a directory.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> vectors.to_disk("/path/to/vectors")
|
||
>
|
||
> ```
|
||
|
||
| Name | Description |
|
||
| ------ | ------------------------------------------------------------------------------------------------------------------------------------------ |
|
||
| `path` | A path to a directory, which will be created if it doesn't exist. Paths may be either strings or `Path`-like objects. ~~Union[str, Path]~~ |
|
||
|
||
## Vectors.from_disk {id="from_disk",tag="method"}
|
||
|
||
Loads state from a directory. Modifies the object in place and returns it.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> vectors = Vectors(StringStore())
|
||
> vectors.from_disk("/path/to/vectors")
|
||
> ```
|
||
|
||
| Name | Description |
|
||
| ----------- | ----------------------------------------------------------------------------------------------- |
|
||
| `path` | A path to a directory. Paths may be either strings or `Path`-like objects. ~~Union[str, Path]~~ |
|
||
| **RETURNS** | The modified `Vectors` object. ~~Vectors~~ |
|
||
|
||
## Vectors.to_bytes {id="to_bytes",tag="method"}
|
||
|
||
Serialize the current state to a binary string.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> vectors_bytes = vectors.to_bytes()
|
||
> ```
|
||
|
||
| Name | Description |
|
||
| ----------- | ------------------------------------------------------ |
|
||
| **RETURNS** | The serialized form of the `Vectors` object. ~~bytes~~ |
|
||
|
||
## Vectors.from_bytes {id="from_bytes",tag="method"}
|
||
|
||
Load state from a binary string.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> fron spacy.vectors import Vectors
|
||
> vectors_bytes = vectors.to_bytes()
|
||
> new_vectors = Vectors(StringStore())
|
||
> new_vectors.from_bytes(vectors_bytes)
|
||
> ```
|
||
|
||
| Name | Description |
|
||
| ----------- | --------------------------------- |
|
||
| `data` | The data to load from. ~~bytes~~ |
|
||
| **RETURNS** | The `Vectors` object. ~~Vectors~~ |
|
||
|
||
## Attributes {id="attributes"}
|
||
|
||
| Name | Description |
|
||
| --------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||
| `data` | Stored vectors data. `numpy` is used for CPU vectors, `cupy` for GPU vectors. ~~Union[numpy.ndarray[ndim=1, dtype=float32], cupy.ndarray[ndim=1, dtype=float32]]~~ |
|
||
| `key2row` | Dictionary mapping word hashes to rows in the `Vectors.data` table. ~~Dict[int, int]~~ |
|
||
| `keys` | Array keeping the keys in order, such that `keys[vectors.key2row[key]] == key`. ~~Union[numpy.ndarray[ndim=1, dtype=float32], cupy.ndarray[ndim=1, dtype=float32]]~~ |
|