mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-10-30 23:47:31 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			417 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
			
		
		
	
	
			417 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
| //- 💫 DOCS > API > DOC
 | |
| 
 | |
| include ../../_includes/_mixins
 | |
| 
 | |
| p A container for accessing linguistic annotations.
 | |
| 
 | |
| +h(2, "attributes") Attributes
 | |
| 
 | |
| +table(["Name", "Type", "Description"])
 | |
|     +row
 | |
|         +cell #[code mem]
 | |
|         +cell #[code Pool]
 | |
|         +cell The document's local memory heap, for all C data it owns.
 | |
| 
 | |
|     +row
 | |
|         +cell #[code vocab]
 | |
|         +cell #[code Vocab]
 | |
|         +cell The store of lexical types.
 | |
| 
 | |
|     +row
 | |
|         +cell #[code user_data]
 | |
|         +cell -
 | |
|         +cell A generic storage area, for user custom data.
 | |
| 
 | |
|     +row
 | |
|         +cell #[code is_tagged]
 | |
|         +cell bool
 | |
|         +cell
 | |
|             |  A flag indicating that the document has been part-of-speech
 | |
|             |  tagged.
 | |
| 
 | |
|     +row
 | |
|         +cell #[code is_parsed]
 | |
|         +cell bool
 | |
|         +cell A flag indicating that the document has been syntactically parsed.
 | |
| 
 | |
|     +row
 | |
|         +cell #[code sentiment]
 | |
|         +cell float
 | |
|         +cell The document's positivity/negativity score, if available.
 | |
| 
 | |
|     +row
 | |
|         +cell #[code user_hooks]
 | |
|         +cell dict
 | |
|         +cell
 | |
|             |  A dictionary that allows customisation of the #[code Doc]'s
 | |
|             |  properties.
 | |
| 
 | |
|     +row
 | |
|         +cell #[code user_token_hooks]
 | |
|         +cell dict
 | |
|         +cell
 | |
|             |  A dictionary that allows customisation of properties of
 | |
|             |  #[code Token] children.
 | |
| 
 | |
|     +row
 | |
|         +cell #[code user_span_hooks]
 | |
|         +cell dict
 | |
|         +cell
 | |
|             |  A dictionary that allows customisation of properties of
 | |
|             |  #[code Span] children.
 | |
| 
 | |
| +h(2, "init") Doc.__init__
 | |
|     +tag method
 | |
| 
 | |
| p Construct a #[code Doc] object.
 | |
| 
 | |
| +aside("Note")
 | |
|     |  The most common way to get a #[code Doc] object is via the #[code nlp]
 | |
|     |  object. This method is usually only used for deserialization or preset
 | |
|     |  tokenization.
 | |
| 
 | |
| +table(["Name", "Type", "Description"])
 | |
|     +row
 | |
|         +cell #[code vocab]
 | |
|         +cell #[code Vocab]
 | |
|         +cell A storage container for lexical types.
 | |
| 
 | |
|     +row
 | |
|         +cell #[code words]
 | |
|         +cell -
 | |
|         +cell A list of strings to add to the container.
 | |
| 
 | |
|     +row
 | |
|         +cell #[code spaces]
 | |
|         +cell -
 | |
|         +cell
 | |
|             |  A list of boolean values indicating whether each word has a
 | |
|             |  subsequent space. Must have the same length as #[code words], if
 | |
|             |  specified. Defaults to a sequence of #[code True].
 | |
| 
 | |
|     +footrow
 | |
|         +cell return
 | |
|         +cell #[code Doc]
 | |
|         +cell The newly constructed object.
 | |
| 
 | |
| +h(2, "getitem") Doc.__getitem__
 | |
|     +tag method
 | |
| 
 | |
| p Get a #[code Token] object.
 | |
| 
 | |
| +aside-code("Example").
 | |
|     doc = nlp(u'Give it back! He pleaded.')
 | |
|     assert doc[0].text == 'Give'
 | |
|     assert doc[-1].text == '.'
 | |
|     span = doc[1:1]
 | |
|     assert span.text == 'it back'
 | |
| 
 | |
| +table(["Name", "Type", "Description"])
 | |
|     +row
 | |
|         +cell #[code i]
 | |
|         +cell int
 | |
|         +cell The index of the token.
 | |
| 
 | |
|     +footrow
 | |
|         +cell return
 | |
|         +cell #[code Token]
 | |
|         +cell The token at #[code doc[i]].
 | |
| 
 | |
| p Get a #[code Span] object.
 | |
| 
 | |
| +table(["Name", "Type", "Description"])
 | |
|     +row
 | |
|         +cell #[code start_end]
 | |
|         +cell tuple
 | |
|         +cell The slice of the document to get.
 | |
| 
 | |
|     +footrow
 | |
|         +cell return
 | |
|         +cell #[code Span]
 | |
|         +cell The span at #[code doc[start : end]].
 | |
| 
 | |
| +h(2, "iter") Doc.__iter__
 | |
|     +tag method
 | |
| 
 | |
| p Iterate over #[code Token] objects.
 | |
| 
 | |
| +table(["Name", "Type", "Description"])
 | |
|     +footrow
 | |
|         +cell yield
 | |
|         +cell #[code Token]
 | |
|         +cell A #[code Token] object.
 | |
| 
 | |
| +h(2, "len") Doc.__len__
 | |
|     +tag method
 | |
| 
 | |
| p Get the number of tokens in the document.
 | |
| 
 | |
| +table(["Name", "Type", "Description"])
 | |
|     +footrow
 | |
|         +cell return
 | |
|         +cell int
 | |
|         +cell The number of tokens in the document.
 | |
| 
 | |
| +h(2, "similarity") Doc.similarity
 | |
|     +tag method
 | |
| 
 | |
| p
 | |
|     |  Make a semantic similarity estimate. The default estimate is cosine
 | |
|     |  similarity using an average of word vectors.
 | |
| 
 | |
| +table(["Name", "Type", "Description"])
 | |
|     +row
 | |
|         +cell #[code other]
 | |
|         +cell -
 | |
|         +cell
 | |
|             |  The object to compare with. By default, accepts #[code Doc],
 | |
|             |  #[code Span], #[code Token] and #[code Lexeme] objects.
 | |
| 
 | |
|     +footrow
 | |
|         +cell return
 | |
|         +cell float
 | |
|         +cell A scalar similarity score. Higher is more similar.
 | |
| 
 | |
| +h(2, "to_array") Doc.to_array
 | |
|     +tag method
 | |
| 
 | |
| p
 | |
|     |  Export the document annotations to a numpy array of shape #[code N*M]
 | |
|     |  where #[code N] is the length of the document and #[code M] is the number
 | |
|     |  of attribute IDs to export. The values will be 32-bit integers.
 | |
| 
 | |
| +aside-code("Example").
 | |
|     from spacy import attrs
 | |
|     doc = nlp(text)
 | |
|     # All strings mapped to integers, for easy export to numpy
 | |
|     np_array = doc.to_array([attrs.LOWER, attrs.POS,
 | |
|                              attrs.ENT_TYPE, attrs.IS_ALPHA])
 | |
| 
 | |
| +table(["Name", "Type", "Description"])
 | |
|     +row
 | |
|         +cell #[code attr_ids]
 | |
|         +cell ints
 | |
|         +cell A list of attribute ID ints.
 | |
| 
 | |
|     +footrow
 | |
|         +cell return
 | |
|         +cell #[code numpy.ndarray[ndim=2, dtype='int32']]
 | |
|         +cell
 | |
|             |  The exported attributes as a 2D numpy array, with one row per
 | |
|             |  token and one column per attribute.
 | |
| 
 | |
| +h(2, "count_by") Doc.count_by
 | |
|     +tag method
 | |
| 
 | |
| p Count the frequencies of a given attribute.
 | |
| 
 | |
| +table(["Name", "Type", "Description"])
 | |
|     +row
 | |
|         +cell #[code attr_id]
 | |
|         +cell int
 | |
|         +cell The attribute ID
 | |
| 
 | |
|     +footrow
 | |
|         +cell return
 | |
|         +cell dict
 | |
|         +cell A dictionary mapping attributes to integer counts.
 | |
| 
 | |
| +h(2, "from_array") Doc.from_array
 | |
|     +tag method
 | |
| 
 | |
| p Load attributes from a numpy array.
 | |
| 
 | |
| +table(["Name", "Type", "Description"])
 | |
|     +row
 | |
|         +cell #[code attr_ids]
 | |
|         +cell ints
 | |
|         +cell A list of attribute ID ints.
 | |
| 
 | |
|     +row
 | |
|         +cell #[code values]
 | |
|         +cell #[code numpy.ndarray[ndim=2, dtype='int32']]
 | |
|         +cell The attribute values to load.
 | |
| 
 | |
|     +footrow
 | |
|         +cell return
 | |
|         +cell #[code None]
 | |
|         +cell -
 | |
| 
 | |
| +h(2, "to_bytes") Doc.to_bytes
 | |
|     +tag method
 | |
| 
 | |
| p Export the document contents to a binary string.
 | |
| 
 | |
| +table(["Name", "Type", "Description"])
 | |
|     +footrow
 | |
|         +cell return
 | |
|         +cell bytes
 | |
|         +cell
 | |
|             |  A losslessly serialized copy of the #[code Doc] including all
 | |
|             |  annotations.
 | |
| 
 | |
| +h(2, "from_bytes") Doc.from_bytes
 | |
|     +tag method
 | |
| 
 | |
| p Import the document contents from a binary string.
 | |
| 
 | |
| +table(["Name", "Type", "Description"])
 | |
|     +row
 | |
|         +cell #[code byte_string]
 | |
|         +cell bytes
 | |
|         +cell The string to load from.
 | |
| 
 | |
|     +footrow
 | |
|         +cell return
 | |
|         +cell #[code Doc]
 | |
|         +cell The #[code self] variable.
 | |
| 
 | |
| +h(2, "merge") Doc.merge
 | |
|     +tag method
 | |
| 
 | |
| p
 | |
|     |  Retokenize the document, such that the span at
 | |
|     |  #[code doc.text[start_idx : end_idx]] is merged into a single token. If
 | |
|     |  #[code start_idx] and #[end_idx] do not mark start and end token
 | |
|     |  boundaries, the document remains unchanged.
 | |
| 
 | |
| +table(["Name", "Type", "Description"])
 | |
|     +row
 | |
|         +cell #[code start_idx]
 | |
|         +cell int
 | |
|         +cell The character index of the start of the slice to merge.
 | |
| 
 | |
|     +row
 | |
|         +cell #[code end_idx]
 | |
|         +cell int
 | |
|         +cell The character index after the end of the slice to merge.
 | |
| 
 | |
|     +row
 | |
|         +cell #[code **attributes]
 | |
|         +cell -
 | |
|         +cell
 | |
|             |  Attributes to assign to the merged token. By default,
 | |
|             |  attributes are inherited from the syntactic root token of
 | |
|             |  the span.
 | |
| 
 | |
|     +footrow
 | |
|         +cell return
 | |
|         +cell #[code Token]
 | |
|         +cell
 | |
|             |  The newly merged token, or None if the start and end
 | |
|             |  indices did not fall at token boundaries
 | |
| 
 | |
| +h(2, "read_bytes") Doc.read_bytes
 | |
|     +tag staticmethod
 | |
| 
 | |
| p A static method, used to read serialized #[code Doc] objects from a file.
 | |
| 
 | |
| +aside-code("Example").
 | |
|     from spacy.tokens.doc import Doc
 | |
|     loc = 'test_serialize.bin'
 | |
|     with open(loc, 'wb') as file_:
 | |
|         file_.write(nlp(u'This is a document.').to_bytes())
 | |
|         file_.write(nlp(u'This is another.').to_bytes())
 | |
|     docs = []
 | |
|     with open(loc, 'rb') as file_:
 | |
|         for byte_string in Doc.read_bytes(file_):
 | |
|             docs.append(Doc(nlp.vocab).from_bytes(byte_string))
 | |
|     assert len(docs) == 2
 | |
| 
 | |
| +table(["Name", "Type", "Description"])
 | |
|     +row
 | |
|         +cell file
 | |
|         +cell buffer
 | |
|         +cell A binary buffer to read the serialized annotations from.
 | |
| 
 | |
|     +footrow
 | |
|         +cell yield
 | |
|         +cell bytes
 | |
|         +cell Binary strings from with documents can be loaded.
 | |
| 
 | |
| +h(2, "text") Doc.text
 | |
|     +tag property
 | |
| 
 | |
| p A unicode representation of the document text.
 | |
| 
 | |
| +table(["Name", "Type", "Description"])
 | |
|     +footrow
 | |
|         +cell return
 | |
|         +cell unicode
 | |
|         +cell The original verbatim text of the document.
 | |
| 
 | |
| +h(2, "text_with_ws") Doc.text_with_ws
 | |
|     +tag property
 | |
| 
 | |
| p
 | |
|     |  An alias of #[code Doc.text], provided for duck-type compatibility with
 | |
|     |  #[code Span] and #[code Token].
 | |
| 
 | |
| +table(["Name", "Type", "Description"])
 | |
|     +footrow
 | |
|         +cell return
 | |
|         +cell unicode
 | |
|         +cell The original verbatim text of the document.
 | |
| 
 | |
| +h(2, "sents") Doc.sents
 | |
|     +tag property
 | |
| 
 | |
| p Iterate over the sentences in the document.
 | |
| 
 | |
| +table(["Name", "Type", "Description"])
 | |
|     +footrow
 | |
|         +cell yield
 | |
|         +cell #[code Span]
 | |
|         +cell Sentences in the document.
 | |
| 
 | |
| +h(2, "ents") Doc.ents
 | |
|     +tag property
 | |
| 
 | |
| p Iterate over the entities in the document.
 | |
| 
 | |
| +table(["Name", "Type", "Description"])
 | |
|     +footrow
 | |
|         +cell yield
 | |
|         +cell #[code Span]
 | |
|         +cell Entities in the document.
 | |
| 
 | |
| +h(2, "noun_chunks") Doc.noun_chunks
 | |
|     +tag property
 | |
| 
 | |
| p
 | |
|     |  Iterate over the base noun phrases in the document. A base noun phrase,
 | |
|     |  or "NP chunk", is a noun phrase that does not permit other NPs to be
 | |
|     |  nested within it.
 | |
| 
 | |
| +table(["Name", "Type", "Description"])
 | |
|     +footrow
 | |
|         +cell yield
 | |
|         +cell #[code Span]
 | |
|         +cell Noun chunks in the document
 | |
| 
 | |
| +h(2, "vector") Doc.vector
 | |
|     +tag property
 | |
| 
 | |
| p
 | |
|     |  A real-valued meaning representation. Defaults to an average of the
 | |
|     |  token vectors.
 | |
| 
 | |
| +table(["Name", "Type", "Description"])
 | |
|     +footrow
 | |
|         +cell return
 | |
|         +cell #[code numpy.ndarray[ndim=1, dtype='float32']]
 | |
|         +cell A 1D numpy array representing the document's semantics.
 | |
| 
 | |
| +h(2, "has_vector") Doc.has_vector
 | |
|     +tag property
 | |
| 
 | |
| p
 | |
|     |  A boolean value indicating whether a word vector is associated with the
 | |
|     |  object.
 | |
| 
 | |
| +table(["Name", "Type", "Description"])
 | |
|     +footrow
 | |
|         +cell return
 | |
|         +cell bool
 | |
|         +cell Whether the document has a vector data attached.
 |