mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-19 05:54:11 +03:00
e2b70df012
* Use isort with Black profile * isort all the things * Fix import cycles as a result of import sorting * Add DOCBIN_ALL_ATTRS type definition * Add isort to requirements * Remove isort from build dependencies check * Typo
152 lines
5.5 KiB
Cython
152 lines
5.5 KiB
Cython
# cython: infer_types=True, profile=True, binding=True
|
|
import warnings
|
|
from typing import Callable, Dict, Iterable, Iterator, Optional, Tuple, Union
|
|
|
|
import srsly
|
|
|
|
from ..tokens.doc cimport Doc
|
|
|
|
from ..errors import Errors, Warnings
|
|
from ..language import Language
|
|
from ..training import Example
|
|
from ..util import raise_error
|
|
|
|
|
|
cdef class Pipe:
|
|
"""This class is a base class and not instantiated directly. It provides
|
|
an interface for pipeline components to implement.
|
|
Trainable pipeline components like the EntityRecognizer or TextCategorizer
|
|
should inherit from the subclass 'TrainablePipe'.
|
|
|
|
DOCS: https://spacy.io/api/pipe
|
|
"""
|
|
|
|
@classmethod
|
|
def __init_subclass__(cls, **kwargs):
|
|
"""Raise a warning if an inheriting class implements 'begin_training'
|
|
(from v2) instead of the new 'initialize' method (from v3)"""
|
|
if hasattr(cls, "begin_training"):
|
|
warnings.warn(Warnings.W088.format(name=cls.__name__))
|
|
|
|
def __call__(self, Doc doc) -> Doc:
|
|
"""Apply the pipe to one document. The document is modified in place,
|
|
and returned. This usually happens under the hood when the nlp object
|
|
is called on a text and all components are applied to the Doc.
|
|
|
|
doc (Doc): The Doc to process.
|
|
RETURNS (Doc): The processed Doc.
|
|
|
|
DOCS: https://spacy.io/api/pipe#call
|
|
"""
|
|
raise NotImplementedError(Errors.E931.format(parent="Pipe", method="__call__", name=self.name))
|
|
|
|
def pipe(self, stream: Iterable[Doc], *, batch_size: int=128) -> Iterator[Doc]:
|
|
"""Apply the pipe to a stream of documents. This usually happens under
|
|
the hood when the nlp object is called on a text and all components are
|
|
applied to the Doc.
|
|
|
|
stream (Iterable[Doc]): A stream of documents.
|
|
batch_size (int): The number of documents to buffer.
|
|
YIELDS (Doc): Processed documents in order.
|
|
|
|
DOCS: https://spacy.io/api/pipe#pipe
|
|
"""
|
|
error_handler = self.get_error_handler()
|
|
for doc in stream:
|
|
try:
|
|
doc = self(doc)
|
|
yield doc
|
|
except Exception as e:
|
|
error_handler(self.name, self, [doc], e)
|
|
|
|
def initialize(self, get_examples: Callable[[], Iterable[Example]], *, nlp: Language=None):
|
|
"""Initialize the pipe. For non-trainable components, this method
|
|
is optional. For trainable components, which should inherit
|
|
from the subclass TrainablePipe, the provided data examples
|
|
should be used to ensure that the internal model is initialized
|
|
properly and all input/output dimensions throughout the network are
|
|
inferred.
|
|
|
|
get_examples (Callable[[], Iterable[Example]]): Function that
|
|
returns a representative sample of gold-standard Example objects.
|
|
nlp (Language): The current nlp object the component is part of.
|
|
|
|
DOCS: https://spacy.io/api/pipe#initialize
|
|
"""
|
|
pass
|
|
|
|
def score(self, examples: Iterable[Example], **kwargs) -> Dict[str, Union[float, Dict[str, float]]]:
|
|
"""Score a batch of examples.
|
|
|
|
examples (Iterable[Example]): The examples to score.
|
|
RETURNS (Dict[str, Any]): The scores.
|
|
|
|
DOCS: https://spacy.io/api/pipe#score
|
|
"""
|
|
if hasattr(self, "scorer") and self.scorer is not None:
|
|
scorer_kwargs = {}
|
|
# use default settings from cfg (e.g., threshold)
|
|
if hasattr(self, "cfg") and isinstance(self.cfg, dict):
|
|
scorer_kwargs.update(self.cfg)
|
|
# override self.cfg["labels"] with self.labels
|
|
if hasattr(self, "labels"):
|
|
scorer_kwargs["labels"] = self.labels
|
|
# override with kwargs settings
|
|
scorer_kwargs.update(kwargs)
|
|
return self.scorer(examples, **scorer_kwargs)
|
|
return {}
|
|
|
|
@property
|
|
def is_trainable(self) -> bool:
|
|
return False
|
|
|
|
@property
|
|
def labels(self) -> Tuple[str, ...]:
|
|
return tuple()
|
|
|
|
@property
|
|
def hide_labels(self) -> bool:
|
|
return False
|
|
|
|
@property
|
|
def label_data(self):
|
|
"""Optional JSON-serializable data that would be sufficient to recreate
|
|
the label set if provided to the `pipe.initialize()` method.
|
|
"""
|
|
return None
|
|
|
|
def _require_labels(self) -> None:
|
|
"""Raise an error if this component has no labels defined."""
|
|
if not self.labels or list(self.labels) == [""]:
|
|
raise ValueError(Errors.E143.format(name=self.name))
|
|
|
|
def set_error_handler(self, error_handler: Callable) -> None:
|
|
"""Set an error handler function.
|
|
|
|
error_handler (Callable[[str, Callable[[Doc], Doc], List[Doc], Exception], None]):
|
|
Function that deals with a failing batch of documents. This callable function should take in
|
|
the component's name, the component itself, the offending batch of documents, and the exception
|
|
that was thrown.
|
|
|
|
DOCS: https://spacy.io/api/pipe#set_error_handler
|
|
"""
|
|
self.error_handler = error_handler
|
|
|
|
def get_error_handler(self) -> Callable:
|
|
"""Retrieve the error handler function.
|
|
|
|
RETURNS (Callable): The error handler, or if it's not set a default function that just reraises.
|
|
|
|
DOCS: https://spacy.io/api/pipe#get_error_handler
|
|
"""
|
|
if hasattr(self, "error_handler"):
|
|
return self.error_handler
|
|
return raise_error
|
|
|
|
|
|
def deserialize_config(path):
|
|
if path.exists():
|
|
return srsly.read_json(path)
|
|
else:
|
|
return {}
|