mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-19 05:54:11 +03:00
e2b70df012
* Use isort with Black profile * isort all the things * Fix import cycles as a result of import sorting * Add DOCBIN_ALL_ATTRS type definition * Add isort to requirements * Remove isort from build dependencies check * Typo
689 lines
27 KiB
Cython
689 lines
27 KiB
Cython
# cython: infer_types=True, cdivision=True, boundscheck=False, binding=True
|
|
from __future__ import print_function
|
|
|
|
cimport numpy as np
|
|
from cymem.cymem cimport Pool
|
|
|
|
from itertools import islice
|
|
|
|
from libc.stdlib cimport calloc, free
|
|
from libc.string cimport memcpy, memset
|
|
from libcpp.vector cimport vector
|
|
|
|
import random
|
|
|
|
import srsly
|
|
from thinc.api import CupyOps, NumpyOps, get_ops, set_dropout_rate
|
|
|
|
from thinc.extra.search cimport Beam
|
|
|
|
import warnings
|
|
|
|
import numpy
|
|
import numpy.random
|
|
|
|
from ..ml.parser_model cimport (
|
|
ActivationsC,
|
|
SizesC,
|
|
WeightsC,
|
|
alloc_activations,
|
|
arg_max_if_valid,
|
|
cpu_log_loss,
|
|
free_activations,
|
|
get_c_sizes,
|
|
get_c_weights,
|
|
predict_states,
|
|
)
|
|
from ..tokens.doc cimport Doc
|
|
from ._parser_internals.stateclass cimport StateClass
|
|
|
|
from .trainable_pipe import TrainablePipe
|
|
|
|
from ._parser_internals cimport _beam_utils
|
|
|
|
from .. import util
|
|
from ..errors import Errors, Warnings
|
|
from ..training import validate_examples, validate_get_examples
|
|
from ._parser_internals import _beam_utils
|
|
|
|
NUMPY_OPS = NumpyOps()
|
|
|
|
|
|
cdef class Parser(TrainablePipe):
|
|
"""
|
|
Base class of the DependencyParser and EntityRecognizer.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
Vocab vocab,
|
|
model,
|
|
name="base_parser",
|
|
moves=None,
|
|
*,
|
|
update_with_oracle_cut_size,
|
|
min_action_freq,
|
|
learn_tokens,
|
|
beam_width=1,
|
|
beam_density=0.0,
|
|
beam_update_prob=0.0,
|
|
multitasks=tuple(),
|
|
incorrect_spans_key=None,
|
|
scorer=None,
|
|
):
|
|
"""Create a Parser.
|
|
|
|
vocab (Vocab): The vocabulary object. Must be shared with documents
|
|
to be processed. The value is set to the `.vocab` attribute.
|
|
model (Model): The model for the transition-based parser. The model needs
|
|
to have a specific substructure of named components --- see the
|
|
spacy.ml.tb_framework.TransitionModel for details.
|
|
name (str): The name of the pipeline component
|
|
moves (Optional[TransitionSystem]): This defines how the parse-state is created,
|
|
updated and evaluated. If 'moves' is None, a new instance is
|
|
created with `self.TransitionSystem()`. Defaults to `None`.
|
|
update_with_oracle_cut_size (int): During training, cut long sequences into
|
|
shorter segments by creating intermediate states based on the gold-standard
|
|
history. The model is not very sensitive to this parameter, so you usually
|
|
won't need to change it. 100 is a good default.
|
|
min_action_freq (int): The minimum frequency of labelled actions to retain.
|
|
Rarer labelled actions have their label backed-off to "dep". While this
|
|
primarily affects the label accuracy, it can also affect the attachment
|
|
structure, as the labels are used to represent the pseudo-projectivity
|
|
transformation.
|
|
learn_tokens (bool): Whether to learn to merge subtokens that are split
|
|
relative to the gold standard. Experimental.
|
|
beam_width (int): The number of candidate analyses to maintain.
|
|
beam_density (float): The minimum ratio between the scores of the first and
|
|
last candidates in the beam. This allows the parser to avoid exploring
|
|
candidates that are too far behind. This is mostly intended to improve
|
|
efficiency, but it can also improve accuracy as deeper search is not
|
|
always better.
|
|
beam_update_prob (float): The chance of making a beam update, instead of a
|
|
greedy update. Greedy updates are an approximation for the beam updates,
|
|
and are faster to compute.
|
|
multitasks: additional multi-tasking components. Experimental.
|
|
incorrect_spans_key (Optional[str]): Identifies spans that are known
|
|
to be incorrect entity annotations. The incorrect entity annotations
|
|
can be stored in the span group, under this key.
|
|
scorer (Optional[Callable]): The scoring method. Defaults to None.
|
|
"""
|
|
self.vocab = vocab
|
|
self.name = name
|
|
cfg = {
|
|
"moves": moves,
|
|
"update_with_oracle_cut_size": update_with_oracle_cut_size,
|
|
"multitasks": list(multitasks),
|
|
"min_action_freq": min_action_freq,
|
|
"learn_tokens": learn_tokens,
|
|
"beam_width": beam_width,
|
|
"beam_density": beam_density,
|
|
"beam_update_prob": beam_update_prob,
|
|
"incorrect_spans_key": incorrect_spans_key
|
|
}
|
|
if moves is None:
|
|
# EntityRecognizer -> BiluoPushDown
|
|
# DependencyParser -> ArcEager
|
|
moves = self.TransitionSystem(
|
|
self.vocab.strings,
|
|
incorrect_spans_key=incorrect_spans_key
|
|
)
|
|
self.moves = moves
|
|
self.model = model
|
|
if self.moves.n_moves != 0:
|
|
self.set_output(self.moves.n_moves)
|
|
self.cfg = cfg
|
|
self._multitasks = []
|
|
for multitask in cfg["multitasks"]:
|
|
self.add_multitask_objective(multitask)
|
|
|
|
self._rehearsal_model = None
|
|
self.scorer = scorer
|
|
|
|
def __getnewargs_ex__(self):
|
|
"""This allows pickling the Parser and its keyword-only init arguments"""
|
|
args = (self.vocab, self.model, self.name, self.moves)
|
|
return args, self.cfg
|
|
|
|
@property
|
|
def move_names(self):
|
|
names = []
|
|
for i in range(self.moves.n_moves):
|
|
name = self.moves.move_name(self.moves.c[i].move, self.moves.c[i].label)
|
|
# Explicitly removing the internal "U-" token used for blocking entities
|
|
if name != "U-":
|
|
names.append(name)
|
|
return names
|
|
|
|
@property
|
|
def labels(self):
|
|
class_names = [self.moves.get_class_name(i) for i in range(self.moves.n_moves)]
|
|
return class_names
|
|
|
|
@property
|
|
def label_data(self):
|
|
return self.moves.labels
|
|
|
|
@property
|
|
def tok2vec(self):
|
|
"""Return the embedding and convolutional layer of the model."""
|
|
return self.model.get_ref("tok2vec")
|
|
|
|
@property
|
|
def postprocesses(self):
|
|
# Available for subclasses, e.g. to deprojectivize
|
|
return []
|
|
|
|
@property
|
|
def incorrect_spans_key(self):
|
|
return self.cfg["incorrect_spans_key"]
|
|
|
|
def add_label(self, label):
|
|
resized = False
|
|
for action in self.moves.action_types:
|
|
added = self.moves.add_action(action, label)
|
|
if added:
|
|
resized = True
|
|
if resized:
|
|
self._resize()
|
|
self.vocab.strings.add(label)
|
|
return 1
|
|
return 0
|
|
|
|
def _ensure_labels_are_added(self, docs):
|
|
"""Ensure that all labels for a batch of docs are added."""
|
|
resized = False
|
|
labels = set()
|
|
for doc in docs:
|
|
labels.update(self.moves.get_doc_labels(doc))
|
|
for label in labels:
|
|
for action in self.moves.action_types:
|
|
added = self.moves.add_action(action, label)
|
|
if added:
|
|
self.vocab.strings.add(label)
|
|
resized = True
|
|
if resized:
|
|
self._resize()
|
|
return 1
|
|
return 0
|
|
|
|
def _resize(self):
|
|
self.model.attrs["resize_output"](self.model, self.moves.n_moves)
|
|
if self._rehearsal_model not in (True, False, None):
|
|
self._rehearsal_model.attrs["resize_output"](
|
|
self._rehearsal_model, self.moves.n_moves
|
|
)
|
|
|
|
def add_multitask_objective(self, target):
|
|
# Defined in subclasses, to avoid circular import
|
|
raise NotImplementedError
|
|
|
|
def init_multitask_objectives(self, get_examples, pipeline, **cfg):
|
|
"""Setup models for secondary objectives, to benefit from multi-task
|
|
learning. This method is intended to be overridden by subclasses.
|
|
|
|
For instance, the dependency parser can benefit from sharing
|
|
an input representation with a label prediction model. These auxiliary
|
|
models are discarded after training.
|
|
"""
|
|
pass
|
|
|
|
def use_params(self, params):
|
|
# Can't decorate cdef class :(. Workaround.
|
|
with self.model.use_params(params):
|
|
yield
|
|
|
|
def pipe(self, docs, *, int batch_size=256):
|
|
"""Process a stream of documents.
|
|
|
|
stream: The sequence of documents to process.
|
|
batch_size (int): Number of documents to accumulate into a working set.
|
|
error_handler (Callable[[str, List[Doc], Exception], Any]): Function that
|
|
deals with a failing batch of documents. The default function just reraises
|
|
the exception.
|
|
|
|
YIELDS (Doc): Documents, in order.
|
|
"""
|
|
cdef Doc doc
|
|
error_handler = self.get_error_handler()
|
|
for batch in util.minibatch(docs, size=batch_size):
|
|
batch_in_order = list(batch)
|
|
try:
|
|
by_length = sorted(batch, key=lambda doc: len(doc))
|
|
for subbatch in util.minibatch(by_length, size=max(batch_size//4, 2)):
|
|
subbatch = list(subbatch)
|
|
parse_states = self.predict(subbatch)
|
|
self.set_annotations(subbatch, parse_states)
|
|
yield from batch_in_order
|
|
except Exception as e:
|
|
error_handler(self.name, self, batch_in_order, e)
|
|
|
|
|
|
def predict(self, docs):
|
|
if isinstance(docs, Doc):
|
|
docs = [docs]
|
|
if not any(len(doc) for doc in docs):
|
|
result = self.moves.init_batch(docs)
|
|
return result
|
|
if self.cfg["beam_width"] == 1:
|
|
return self.greedy_parse(docs, drop=0.0)
|
|
else:
|
|
return self.beam_parse(
|
|
docs,
|
|
drop=0.0,
|
|
beam_width=self.cfg["beam_width"],
|
|
beam_density=self.cfg["beam_density"]
|
|
)
|
|
|
|
def greedy_parse(self, docs, drop=0.):
|
|
cdef vector[StateC*] states
|
|
cdef StateClass state
|
|
ops = self.model.ops
|
|
cdef CBlas cblas
|
|
if isinstance(ops, CupyOps):
|
|
cblas = NUMPY_OPS.cblas()
|
|
else:
|
|
cblas = ops.cblas()
|
|
self._ensure_labels_are_added(docs)
|
|
set_dropout_rate(self.model, drop)
|
|
batch = self.moves.init_batch(docs)
|
|
model = self.model.predict(docs)
|
|
weights = get_c_weights(model)
|
|
for state in batch:
|
|
if not state.is_final():
|
|
states.push_back(state.c)
|
|
sizes = get_c_sizes(model, states.size())
|
|
with nogil:
|
|
self._parseC(cblas, &states[0], weights, sizes)
|
|
model.clear_memory()
|
|
del model
|
|
return batch
|
|
|
|
def beam_parse(self, docs, int beam_width, float drop=0., beam_density=0.):
|
|
cdef Beam beam
|
|
cdef Doc doc
|
|
self._ensure_labels_are_added(docs)
|
|
batch = _beam_utils.BeamBatch(
|
|
self.moves,
|
|
self.moves.init_batch(docs),
|
|
None,
|
|
beam_width,
|
|
density=beam_density
|
|
)
|
|
model = self.model.predict(docs)
|
|
while not batch.is_done:
|
|
states = batch.get_unfinished_states()
|
|
if not states:
|
|
break
|
|
scores = model.predict(states)
|
|
batch.advance(scores)
|
|
model.clear_memory()
|
|
del model
|
|
return list(batch)
|
|
|
|
cdef void _parseC(self, CBlas cblas, StateC** states,
|
|
WeightsC weights, SizesC sizes) nogil:
|
|
cdef int i, j
|
|
cdef vector[StateC*] unfinished
|
|
cdef ActivationsC activations = alloc_activations(sizes)
|
|
while sizes.states >= 1:
|
|
predict_states(cblas, &activations, states, &weights, sizes)
|
|
# Validate actions, argmax, take action.
|
|
self.c_transition_batch(states,
|
|
activations.scores, sizes.classes, sizes.states)
|
|
for i in range(sizes.states):
|
|
if not states[i].is_final():
|
|
unfinished.push_back(states[i])
|
|
for i in range(unfinished.size()):
|
|
states[i] = unfinished[i]
|
|
sizes.states = unfinished.size()
|
|
unfinished.clear()
|
|
free_activations(&activations)
|
|
|
|
def set_annotations(self, docs, states_or_beams):
|
|
cdef StateClass state
|
|
cdef Beam beam
|
|
cdef Doc doc
|
|
states = _beam_utils.collect_states(states_or_beams, docs)
|
|
for i, (state, doc) in enumerate(zip(states, docs)):
|
|
self.moves.set_annotations(state, doc)
|
|
for hook in self.postprocesses:
|
|
hook(doc)
|
|
|
|
def transition_states(self, states, float[:, ::1] scores):
|
|
cdef StateClass state
|
|
cdef float* c_scores = &scores[0, 0]
|
|
cdef vector[StateC*] c_states
|
|
for state in states:
|
|
c_states.push_back(state.c)
|
|
self.c_transition_batch(&c_states[0], c_scores, scores.shape[1], scores.shape[0])
|
|
return [state for state in states if not state.c.is_final()]
|
|
|
|
cdef void c_transition_batch(self, StateC** states, const float* scores,
|
|
int nr_class, int batch_size) nogil:
|
|
# n_moves should not be zero at this point, but make sure to avoid zero-length mem alloc
|
|
with gil:
|
|
assert self.moves.n_moves > 0, Errors.E924.format(name=self.name)
|
|
is_valid = <int*>calloc(self.moves.n_moves, sizeof(int))
|
|
cdef int i, guess
|
|
cdef Transition action
|
|
for i in range(batch_size):
|
|
self.moves.set_valid(is_valid, states[i])
|
|
guess = arg_max_if_valid(&scores[i*nr_class], is_valid, nr_class)
|
|
if guess == -1:
|
|
# This shouldn't happen, but it's hard to raise an error here,
|
|
# and we don't want to infinite loop. So, force to end state.
|
|
states[i].force_final()
|
|
else:
|
|
action = self.moves.c[guess]
|
|
action.do(states[i], action.label)
|
|
free(is_valid)
|
|
|
|
def update(self, examples, *, drop=0., sgd=None, losses=None):
|
|
cdef StateClass state
|
|
if losses is None:
|
|
losses = {}
|
|
losses.setdefault(self.name, 0.)
|
|
validate_examples(examples, "Parser.update")
|
|
self._ensure_labels_are_added(
|
|
[eg.x for eg in examples] + [eg.y for eg in examples]
|
|
)
|
|
for multitask in self._multitasks:
|
|
multitask.update(examples, drop=drop, sgd=sgd)
|
|
n_examples = len([eg for eg in examples if self.moves.has_gold(eg)])
|
|
if n_examples == 0:
|
|
return losses
|
|
set_dropout_rate(self.model, drop)
|
|
# The probability we use beam update, instead of falling back to
|
|
# a greedy update
|
|
beam_update_prob = self.cfg["beam_update_prob"]
|
|
if self.cfg['beam_width'] >= 2 and numpy.random.random() < beam_update_prob:
|
|
return self.update_beam(
|
|
examples,
|
|
beam_width=self.cfg["beam_width"],
|
|
sgd=sgd,
|
|
losses=losses,
|
|
beam_density=self.cfg["beam_density"]
|
|
)
|
|
max_moves = self.cfg["update_with_oracle_cut_size"]
|
|
if max_moves >= 1:
|
|
# Chop sequences into lengths of this many words, to make the
|
|
# batch uniform length.
|
|
max_moves = int(random.uniform(max_moves // 2, max_moves * 2))
|
|
states, golds, _ = self._init_gold_batch(
|
|
examples,
|
|
max_length=max_moves
|
|
)
|
|
else:
|
|
states, golds, _ = self.moves.init_gold_batch(examples)
|
|
if not states:
|
|
return losses
|
|
model, backprop_tok2vec = self.model.begin_update([eg.x for eg in examples])
|
|
|
|
all_states = list(states)
|
|
states_golds = list(zip(states, golds))
|
|
n_moves = 0
|
|
while states_golds:
|
|
states, golds = zip(*states_golds)
|
|
scores, backprop = model.begin_update(states)
|
|
d_scores = self.get_batch_loss(states, golds, scores, losses)
|
|
# Note that the gradient isn't normalized by the batch size
|
|
# here, because our "samples" are really the states...But we
|
|
# can't normalize by the number of states either, as then we'd
|
|
# be getting smaller gradients for states in long sequences.
|
|
backprop(d_scores)
|
|
# Follow the predicted action
|
|
self.transition_states(states, scores)
|
|
states_golds = [(s, g) for (s, g) in zip(states, golds) if not s.is_final()]
|
|
if max_moves >= 1 and n_moves >= max_moves:
|
|
break
|
|
n_moves += 1
|
|
|
|
backprop_tok2vec(golds)
|
|
if sgd not in (None, False):
|
|
self.finish_update(sgd)
|
|
# Ugh, this is annoying. If we're working on GPU, we want to free the
|
|
# memory ASAP. It seems that Python doesn't necessarily get around to
|
|
# removing these in time if we don't explicitly delete? It's confusing.
|
|
del backprop
|
|
del backprop_tok2vec
|
|
model.clear_memory()
|
|
del model
|
|
return losses
|
|
|
|
def rehearse(self, examples, sgd=None, losses=None, **cfg):
|
|
"""Perform a "rehearsal" update, to prevent catastrophic forgetting."""
|
|
if losses is None:
|
|
losses = {}
|
|
for multitask in self._multitasks:
|
|
if hasattr(multitask, 'rehearse'):
|
|
multitask.rehearse(examples, losses=losses, sgd=sgd)
|
|
if self._rehearsal_model is None:
|
|
return None
|
|
losses.setdefault(self.name, 0.)
|
|
validate_examples(examples, "Parser.rehearse")
|
|
docs = [eg.predicted for eg in examples]
|
|
states = self.moves.init_batch(docs)
|
|
# This is pretty dirty, but the NER can resize itself in init_batch,
|
|
# if labels are missing. We therefore have to check whether we need to
|
|
# expand our model output.
|
|
self._resize()
|
|
# Prepare the stepwise model, and get the callback for finishing the batch
|
|
set_dropout_rate(self._rehearsal_model, 0.0)
|
|
set_dropout_rate(self.model, 0.0)
|
|
tutor, _ = self._rehearsal_model.begin_update(docs)
|
|
model, backprop_tok2vec = self.model.begin_update(docs)
|
|
n_scores = 0.
|
|
loss = 0.
|
|
while states:
|
|
targets, _ = tutor.begin_update(states)
|
|
guesses, backprop = model.begin_update(states)
|
|
d_scores = (guesses - targets) / targets.shape[0]
|
|
# If all weights for an output are 0 in the original model, don't
|
|
# supervise that output. This allows us to add classes.
|
|
loss += (d_scores**2).sum()
|
|
backprop(d_scores)
|
|
# Follow the predicted action
|
|
self.transition_states(states, guesses)
|
|
states = [state for state in states if not state.is_final()]
|
|
n_scores += d_scores.size
|
|
# Do the backprop
|
|
backprop_tok2vec(docs)
|
|
if sgd is not None:
|
|
self.finish_update(sgd)
|
|
losses[self.name] += loss / n_scores
|
|
del backprop
|
|
del backprop_tok2vec
|
|
model.clear_memory()
|
|
tutor.clear_memory()
|
|
del model
|
|
del tutor
|
|
return losses
|
|
|
|
def update_beam(self, examples, *, beam_width,
|
|
drop=0., sgd=None, losses=None, beam_density=0.0):
|
|
states, golds, _ = self.moves.init_gold_batch(examples)
|
|
if not states:
|
|
return losses
|
|
# Prepare the stepwise model, and get the callback for finishing the batch
|
|
model, backprop_tok2vec = self.model.begin_update(
|
|
[eg.predicted for eg in examples])
|
|
loss = _beam_utils.update_beam(
|
|
self.moves,
|
|
states,
|
|
golds,
|
|
model,
|
|
beam_width,
|
|
beam_density=beam_density,
|
|
)
|
|
losses[self.name] += loss
|
|
backprop_tok2vec(golds)
|
|
if sgd is not None:
|
|
self.finish_update(sgd)
|
|
|
|
def get_batch_loss(self, states, golds, float[:, ::1] scores, losses):
|
|
cdef StateClass state
|
|
cdef Pool mem = Pool()
|
|
cdef int i
|
|
|
|
# n_moves should not be zero at this point, but make sure to avoid zero-length mem alloc
|
|
assert self.moves.n_moves > 0, Errors.E924.format(name=self.name)
|
|
|
|
is_valid = <int*>mem.alloc(self.moves.n_moves, sizeof(int))
|
|
costs = <float*>mem.alloc(self.moves.n_moves, sizeof(float))
|
|
cdef np.ndarray d_scores = numpy.zeros((len(states), self.moves.n_moves),
|
|
dtype='f', order='C')
|
|
c_d_scores = <float*>d_scores.data
|
|
unseen_classes = self.model.attrs["unseen_classes"]
|
|
for i, (state, gold) in enumerate(zip(states, golds)):
|
|
memset(is_valid, 0, self.moves.n_moves * sizeof(int))
|
|
memset(costs, 0, self.moves.n_moves * sizeof(float))
|
|
self.moves.set_costs(is_valid, costs, state.c, gold)
|
|
for j in range(self.moves.n_moves):
|
|
if costs[j] <= 0.0 and j in unseen_classes:
|
|
unseen_classes.remove(j)
|
|
cpu_log_loss(c_d_scores,
|
|
costs, is_valid, &scores[i, 0], d_scores.shape[1])
|
|
c_d_scores += d_scores.shape[1]
|
|
# Note that we don't normalize this. See comment in update() for why.
|
|
if losses is not None:
|
|
losses.setdefault(self.name, 0.)
|
|
losses[self.name] += (d_scores**2).sum()
|
|
return d_scores
|
|
|
|
def set_output(self, nO):
|
|
self.model.attrs["resize_output"](self.model, nO)
|
|
|
|
def initialize(self, get_examples, nlp=None, labels=None):
|
|
validate_get_examples(get_examples, "Parser.initialize")
|
|
util.check_lexeme_norms(self.vocab, "parser or NER")
|
|
if labels is not None:
|
|
actions = dict(labels)
|
|
else:
|
|
actions = self.moves.get_actions(
|
|
examples=get_examples(),
|
|
min_freq=self.cfg['min_action_freq'],
|
|
learn_tokens=self.cfg["learn_tokens"]
|
|
)
|
|
for action, labels in self.moves.labels.items():
|
|
actions.setdefault(action, {})
|
|
for label, freq in labels.items():
|
|
if label not in actions[action]:
|
|
actions[action][label] = freq
|
|
self.moves.initialize_actions(actions)
|
|
# make sure we resize so we have an appropriate upper layer
|
|
self._resize()
|
|
doc_sample = []
|
|
if nlp is not None:
|
|
for name, component in nlp.pipeline:
|
|
if component is self:
|
|
break
|
|
# non-trainable components may have a pipe() implementation that refers to dummy
|
|
# predict and set_annotations methods
|
|
if hasattr(component, "pipe"):
|
|
doc_sample = list(component.pipe(doc_sample, batch_size=8))
|
|
else:
|
|
doc_sample = [component(doc) for doc in doc_sample]
|
|
if not doc_sample:
|
|
for example in islice(get_examples(), 10):
|
|
doc_sample.append(example.predicted)
|
|
assert len(doc_sample) > 0, Errors.E923.format(name=self.name)
|
|
self.model.initialize(doc_sample)
|
|
if nlp is not None:
|
|
self.init_multitask_objectives(get_examples, nlp.pipeline)
|
|
|
|
def to_disk(self, path, exclude=tuple()):
|
|
serializers = {
|
|
"model": lambda p: (self.model.to_disk(p) if self.model is not True else True),
|
|
"vocab": lambda p: self.vocab.to_disk(p, exclude=exclude),
|
|
"moves": lambda p: self.moves.to_disk(p, exclude=["strings"]),
|
|
"cfg": lambda p: srsly.write_json(p, self.cfg)
|
|
}
|
|
util.to_disk(path, serializers, exclude)
|
|
|
|
def from_disk(self, path, exclude=tuple()):
|
|
deserializers = {
|
|
"vocab": lambda p: self.vocab.from_disk(p, exclude=exclude),
|
|
"moves": lambda p: self.moves.from_disk(p, exclude=["strings"]),
|
|
"cfg": lambda p: self.cfg.update(srsly.read_json(p)),
|
|
"model": lambda p: None,
|
|
}
|
|
util.from_disk(path, deserializers, exclude)
|
|
if "model" not in exclude:
|
|
path = util.ensure_path(path)
|
|
with (path / "model").open("rb") as file_:
|
|
bytes_data = file_.read()
|
|
try:
|
|
self._resize()
|
|
self.model.from_bytes(bytes_data)
|
|
except AttributeError:
|
|
raise ValueError(Errors.E149)
|
|
return self
|
|
|
|
def to_bytes(self, exclude=tuple()):
|
|
serializers = {
|
|
"model": lambda: (self.model.to_bytes()),
|
|
"vocab": lambda: self.vocab.to_bytes(exclude=exclude),
|
|
"moves": lambda: self.moves.to_bytes(exclude=["strings"]),
|
|
"cfg": lambda: srsly.json_dumps(self.cfg, indent=2, sort_keys=True)
|
|
}
|
|
return util.to_bytes(serializers, exclude)
|
|
|
|
def from_bytes(self, bytes_data, exclude=tuple()):
|
|
deserializers = {
|
|
"vocab": lambda b: self.vocab.from_bytes(b, exclude=exclude),
|
|
"moves": lambda b: self.moves.from_bytes(b, exclude=["strings"]),
|
|
"cfg": lambda b: self.cfg.update(srsly.json_loads(b)),
|
|
"model": lambda b: None,
|
|
}
|
|
msg = util.from_bytes(bytes_data, deserializers, exclude)
|
|
if 'model' not in exclude:
|
|
if 'model' in msg:
|
|
try:
|
|
self.model.from_bytes(msg['model'])
|
|
except AttributeError:
|
|
raise ValueError(Errors.E149) from None
|
|
return self
|
|
|
|
def _init_gold_batch(self, examples, max_length):
|
|
"""Make a square batch, of length equal to the shortest transition
|
|
sequence or a cap. A long
|
|
doc will get multiple states. Let's say we have a doc of length 2*N,
|
|
where N is the shortest doc. We'll make two states, one representing
|
|
long_doc[:N], and another representing long_doc[N:]."""
|
|
cdef:
|
|
StateClass start_state
|
|
StateClass state
|
|
Transition action
|
|
all_states = self.moves.init_batch([eg.predicted for eg in examples])
|
|
states = []
|
|
golds = []
|
|
to_cut = []
|
|
for state, eg in zip(all_states, examples):
|
|
if self.moves.has_gold(eg) and not state.is_final():
|
|
gold = self.moves.init_gold(state, eg)
|
|
if len(eg.x) < max_length:
|
|
states.append(state)
|
|
golds.append(gold)
|
|
else:
|
|
oracle_actions = self.moves.get_oracle_sequence_from_state(
|
|
state.copy(), gold)
|
|
to_cut.append((eg, state, gold, oracle_actions))
|
|
if not to_cut:
|
|
return states, golds, 0
|
|
cdef int clas
|
|
for eg, state, gold, oracle_actions in to_cut:
|
|
for i in range(0, len(oracle_actions), max_length):
|
|
start_state = state.copy()
|
|
for clas in oracle_actions[i:i+max_length]:
|
|
action = self.moves.c[clas]
|
|
action.do(state.c, action.label)
|
|
if state.is_final():
|
|
break
|
|
if self.moves.has_gold(eg, start_state.B(0), state.B(0)):
|
|
states.append(start_state)
|
|
golds.append(gold)
|
|
if state.is_final():
|
|
break
|
|
return states, golds, max_length
|