mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 01:48:04 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			142 lines
		
	
	
		
			3.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			142 lines
		
	
	
		
			3.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
from thinc.api import Config
 | 
						|
 | 
						|
import spacy
 | 
						|
from spacy import util
 | 
						|
from spacy.lang.en import English
 | 
						|
from spacy.util import registry
 | 
						|
 | 
						|
from ..util import make_tempdir
 | 
						|
from ...ml.models import build_Tok2Vec_model, build_tb_parser_model
 | 
						|
 | 
						|
nlp_config_string = """
 | 
						|
[nlp]
 | 
						|
lang = "en"
 | 
						|
 | 
						|
[nlp.pipeline]
 | 
						|
 | 
						|
[nlp.pipeline.tok2vec]
 | 
						|
factory = "tok2vec"
 | 
						|
 | 
						|
[nlp.pipeline.tok2vec.model]
 | 
						|
@architectures = "spacy.HashEmbedCNN.v1"
 | 
						|
pretrained_vectors = null
 | 
						|
width = 342
 | 
						|
depth = 4
 | 
						|
window_size = 1
 | 
						|
embed_size = 2000
 | 
						|
maxout_pieces = 3
 | 
						|
subword_features = true
 | 
						|
dropout = null
 | 
						|
 | 
						|
[nlp.pipeline.tagger]
 | 
						|
factory = "tagger"
 | 
						|
 | 
						|
[nlp.pipeline.tagger.model]
 | 
						|
@architectures = "spacy.Tagger.v1"
 | 
						|
 | 
						|
[nlp.pipeline.tagger.model.tok2vec]
 | 
						|
@architectures = "spacy.Tok2VecTensors.v1"
 | 
						|
width = ${nlp.pipeline.tok2vec.model:width}
 | 
						|
"""
 | 
						|
 | 
						|
 | 
						|
parser_config_string = """
 | 
						|
[model]
 | 
						|
@architectures = "spacy.TransitionBasedParser.v1"
 | 
						|
nr_feature_tokens = 99
 | 
						|
hidden_width = 66
 | 
						|
maxout_pieces = 2
 | 
						|
 | 
						|
[model.tok2vec]
 | 
						|
@architectures = "spacy.HashEmbedCNN.v1"
 | 
						|
pretrained_vectors = null
 | 
						|
width = 333
 | 
						|
depth = 4
 | 
						|
embed_size = 5555
 | 
						|
window_size = 1
 | 
						|
maxout_pieces = 7
 | 
						|
subword_features = false
 | 
						|
dropout = null
 | 
						|
"""
 | 
						|
 | 
						|
 | 
						|
@registry.architectures.register("my_test_parser")
 | 
						|
def my_parser():
 | 
						|
    tok2vec = build_Tok2Vec_model(
 | 
						|
        width=321,
 | 
						|
        embed_size=5432,
 | 
						|
        pretrained_vectors=None,
 | 
						|
        window_size=3,
 | 
						|
        maxout_pieces=4,
 | 
						|
        subword_features=True,
 | 
						|
        char_embed=True,
 | 
						|
        nM=64,
 | 
						|
        nC=8,
 | 
						|
        conv_depth=2,
 | 
						|
        bilstm_depth=0,
 | 
						|
        dropout=None,
 | 
						|
    )
 | 
						|
    parser = build_tb_parser_model(
 | 
						|
        tok2vec=tok2vec, nr_feature_tokens=7, hidden_width=65, maxout_pieces=5
 | 
						|
    )
 | 
						|
    return parser
 | 
						|
 | 
						|
 | 
						|
def test_serialize_nlp():
 | 
						|
    """ Create a custom nlp pipeline from config and ensure it serializes it correctly """
 | 
						|
    nlp_config = Config().from_str(nlp_config_string)
 | 
						|
    nlp = util.load_model_from_config(nlp_config["nlp"])
 | 
						|
    nlp.begin_training()
 | 
						|
    assert "tok2vec" in nlp.pipe_names
 | 
						|
    assert "tagger" in nlp.pipe_names
 | 
						|
    assert "parser" not in nlp.pipe_names
 | 
						|
    assert nlp.get_pipe("tagger").model.get_ref("tok2vec").get_dim("nO") == 342
 | 
						|
 | 
						|
    with make_tempdir() as d:
 | 
						|
        nlp.to_disk(d)
 | 
						|
        nlp2 = spacy.load(d)
 | 
						|
        assert "tok2vec" in nlp2.pipe_names
 | 
						|
        assert "tagger" in nlp2.pipe_names
 | 
						|
        assert "parser" not in nlp2.pipe_names
 | 
						|
        assert nlp2.get_pipe("tagger").model.get_ref("tok2vec").get_dim("nO") == 342
 | 
						|
 | 
						|
 | 
						|
def test_serialize_custom_nlp():
 | 
						|
    """ Create a custom nlp pipeline and ensure it serializes it correctly"""
 | 
						|
    nlp = English()
 | 
						|
    parser_cfg = dict()
 | 
						|
    parser_cfg["model"] = {"@architectures": "my_test_parser"}
 | 
						|
    parser = nlp.create_pipe("parser", parser_cfg)
 | 
						|
    nlp.add_pipe(parser)
 | 
						|
    nlp.begin_training()
 | 
						|
 | 
						|
    with make_tempdir() as d:
 | 
						|
        nlp.to_disk(d)
 | 
						|
        nlp2 = spacy.load(d)
 | 
						|
        model = nlp2.get_pipe("parser").model
 | 
						|
        tok2vec = model.get_ref("tok2vec")
 | 
						|
        upper = model.get_ref("upper")
 | 
						|
 | 
						|
        # check that we have the correct settings, not the default ones
 | 
						|
        assert upper.get_dim("nI") == 65
 | 
						|
 | 
						|
 | 
						|
def test_serialize_parser():
 | 
						|
    """ Create a non-default parser config to check nlp serializes it correctly """
 | 
						|
    nlp = English()
 | 
						|
    model_config = Config().from_str(parser_config_string)
 | 
						|
    parser = nlp.create_pipe("parser", config=model_config)
 | 
						|
    parser.add_label("nsubj")
 | 
						|
    nlp.add_pipe(parser)
 | 
						|
    nlp.begin_training()
 | 
						|
 | 
						|
    with make_tempdir() as d:
 | 
						|
        nlp.to_disk(d)
 | 
						|
        nlp2 = spacy.load(d)
 | 
						|
        model = nlp2.get_pipe("parser").model
 | 
						|
        tok2vec = model.get_ref("tok2vec")
 | 
						|
        upper = model.get_ref("upper")
 | 
						|
 | 
						|
        # check that we have the correct settings, not the default ones
 | 
						|
        assert upper.get_dim("nI") == 66
 |