mirror of
https://github.com/explosion/spaCy.git
synced 2024-12-25 17:36:30 +03:00
5847be6022
* avoid changing original config * fix elif structure, batch with just int crashes otherwise * tok2vec example with doc2feats, encode and embed architectures * further clean up MultiHashEmbed * further generalize Tok2Vec to work with extract-embed-encode parts * avoid initializing the charembed layer with Docs (for now ?) * small fixes for bilstm config (still does not run) * rename to core layer * move new configs * walk model to set nI instead of using core ref * fix senter overfitting test to be more similar to the training data (avoid flakey behaviour)
55 lines
1.7 KiB
Python
55 lines
1.7 KiB
Python
from thinc.api import Model
|
|
|
|
|
|
def CharacterEmbed(nM, nC):
|
|
# nM: Number of dimensions per character. nC: Number of characters.
|
|
nO = nM * nC if (nM is not None and nC is not None) else None
|
|
return Model(
|
|
"charembed",
|
|
forward,
|
|
init=init,
|
|
dims={"nM": nM, "nC": nC, "nO": nO, "nV": 256},
|
|
params={"E": None},
|
|
).initialize()
|
|
|
|
|
|
def init(model, X=None, Y=None):
|
|
vectors_table = model.ops.alloc3f(
|
|
model.get_dim("nC"), model.get_dim("nV"), model.get_dim("nM")
|
|
)
|
|
model.set_param("E", vectors_table)
|
|
|
|
|
|
def forward(model, docs, is_train):
|
|
if docs is None:
|
|
return []
|
|
ids = []
|
|
output = []
|
|
E = model.get_param("E")
|
|
nC = model.get_dim("nC")
|
|
nM = model.get_dim("nM")
|
|
nO = model.get_dim("nO")
|
|
# This assists in indexing; it's like looping over this dimension.
|
|
# Still consider this weird witch craft...But thanks to Mark Neumann
|
|
# for the tip.
|
|
nCv = model.ops.xp.arange(nC)
|
|
for doc in docs:
|
|
doc_ids = doc.to_utf8_array(nr_char=nC)
|
|
doc_vectors = model.ops.alloc3f(len(doc), nC, nM)
|
|
# Let's say I have a 2d array of indices, and a 3d table of data. What numpy
|
|
# incantation do I chant to get
|
|
# output[i, j, k] == data[j, ids[i, j], k]?
|
|
doc_vectors[:, nCv] = E[nCv, doc_ids[:, nCv]]
|
|
output.append(doc_vectors.reshape((len(doc), nO)))
|
|
ids.append(doc_ids)
|
|
|
|
def backprop(d_output):
|
|
dE = model.ops.alloc(E.shape, dtype=E.dtype)
|
|
for doc_ids, d_doc_vectors in zip(ids, d_output):
|
|
d_doc_vectors = d_doc_vectors.reshape((len(doc_ids), nC, nM))
|
|
dE[nCv, doc_ids[:, nCv]] += d_doc_vectors[:, nCv]
|
|
model.inc_grad("E", dE)
|
|
return []
|
|
|
|
return output, backprop
|