spaCy/spacy/tests/regression/test_issue4001-4500.py
Sofie Van Landeghem dd207a28be
cleanup components API (#5726)
* add keyword separator for update functions and drop unused "state"

* few more Example tests and various small fixes

* consistently return losses after update call

* eliminate unused tensors field across pipe components

* fix name

* fix arg name
2020-07-09 19:43:39 +02:00

470 lines
16 KiB
Python

import pytest
from spacy.pipeline import EntityRuler, EntityRecognizer, Pipe
from spacy.pipeline.defaults import default_ner
from spacy.matcher import PhraseMatcher, Matcher
from spacy.tokens import Doc, Span, DocBin
from spacy.gold import Example, Corpus
from spacy.gold.converters import json2docs
from spacy.vocab import Vocab
from spacy.lang.en import English
from spacy.util import minibatch, ensure_path, load_model
from spacy.util import compile_prefix_regex, compile_suffix_regex, compile_infix_regex
from spacy.tokenizer import Tokenizer
from spacy.lang.el import Greek
from spacy.language import Language
import spacy
from thinc.api import compounding
from collections import defaultdict
from ..util import make_tempdir
def test_issue4002(en_vocab):
"""Test that the PhraseMatcher can match on overwritten NORM attributes.
"""
matcher = PhraseMatcher(en_vocab, attr="NORM")
pattern1 = Doc(en_vocab, words=["c", "d"])
assert [t.norm_ for t in pattern1] == ["c", "d"]
matcher.add("TEST", [pattern1])
doc = Doc(en_vocab, words=["a", "b", "c", "d"])
assert [t.norm_ for t in doc] == ["a", "b", "c", "d"]
matches = matcher(doc)
assert len(matches) == 1
matcher = PhraseMatcher(en_vocab, attr="NORM")
pattern2 = Doc(en_vocab, words=["1", "2"])
pattern2[0].norm_ = "c"
pattern2[1].norm_ = "d"
assert [t.norm_ for t in pattern2] == ["c", "d"]
matcher.add("TEST", [pattern2])
matches = matcher(doc)
assert len(matches) == 1
def test_issue4030():
""" Test whether textcat works fine with empty doc """
unique_classes = ["offensive", "inoffensive"]
x_train = [
"This is an offensive text",
"This is the second offensive text",
"inoff",
]
y_train = ["offensive", "offensive", "inoffensive"]
nlp = spacy.blank("en")
# preparing the data
train_data = []
for text, train_instance in zip(x_train, y_train):
cat_dict = {label: label == train_instance for label in unique_classes}
train_data.append(Example.from_dict(nlp.make_doc(text), {"cats": cat_dict}))
# add a text categorizer component
textcat = nlp.create_pipe(
"textcat",
config={"exclusive_classes": True, "architecture": "bow", "ngram_size": 2},
)
for label in unique_classes:
textcat.add_label(label)
nlp.add_pipe(textcat, last=True)
# training the network
with nlp.select_pipes(enable="textcat"):
optimizer = nlp.begin_training()
for i in range(3):
losses = {}
batches = minibatch(train_data, size=compounding(4.0, 32.0, 1.001))
for batch in batches:
nlp.update(
examples=batch, sgd=optimizer, drop=0.1, losses=losses,
)
# processing of an empty doc should result in 0.0 for all categories
doc = nlp("")
assert doc.cats["offensive"] == 0.0
assert doc.cats["inoffensive"] == 0.0
@pytest.mark.filterwarnings("ignore::UserWarning")
def test_issue4042():
"""Test that serialization of an EntityRuler before NER works fine."""
nlp = English()
# add ner pipe
ner = nlp.create_pipe("ner")
ner.add_label("SOME_LABEL")
nlp.add_pipe(ner)
nlp.begin_training()
# Add entity ruler
ruler = EntityRuler(nlp)
patterns = [
{"label": "MY_ORG", "pattern": "Apple"},
{"label": "MY_GPE", "pattern": [{"lower": "san"}, {"lower": "francisco"}]},
]
ruler.add_patterns(patterns)
nlp.add_pipe(ruler, before="ner") # works fine with "after"
doc1 = nlp("What do you think about Apple ?")
assert doc1.ents[0].label_ == "MY_ORG"
with make_tempdir() as d:
output_dir = ensure_path(d)
if not output_dir.exists():
output_dir.mkdir()
nlp.to_disk(output_dir)
nlp2 = load_model(output_dir)
doc2 = nlp2("What do you think about Apple ?")
assert doc2.ents[0].label_ == "MY_ORG"
@pytest.mark.filterwarnings("ignore::UserWarning")
def test_issue4042_bug2():
"""
Test that serialization of an NER works fine when new labels were added.
This is the second bug of two bugs underlying the issue 4042.
"""
nlp1 = English()
vocab = nlp1.vocab
# add ner pipe
ner1 = nlp1.create_pipe("ner")
ner1.add_label("SOME_LABEL")
nlp1.add_pipe(ner1)
nlp1.begin_training()
# add a new label to the doc
doc1 = nlp1("What do you think about Apple ?")
assert len(ner1.labels) == 1
assert "SOME_LABEL" in ner1.labels
apple_ent = Span(doc1, 5, 6, label="MY_ORG")
doc1.ents = list(doc1.ents) + [apple_ent]
# reapply the NER - at this point it should resize itself
ner1(doc1)
assert len(ner1.labels) == 2
assert "SOME_LABEL" in ner1.labels
assert "MY_ORG" in ner1.labels
with make_tempdir() as d:
# assert IO goes fine
output_dir = ensure_path(d)
if not output_dir.exists():
output_dir.mkdir()
ner1.to_disk(output_dir)
config = {
"learn_tokens": False,
"min_action_freq": 30,
"beam_width": 1,
"beam_update_prob": 1.0,
}
ner2 = EntityRecognizer(vocab, default_ner(), **config)
ner2.from_disk(output_dir)
assert len(ner2.labels) == 2
def test_issue4054(en_vocab):
"""Test that a new blank model can be made with a vocab from file,
and that serialization does not drop the language at any point."""
nlp1 = English()
vocab1 = nlp1.vocab
with make_tempdir() as d:
vocab_dir = ensure_path(d / "vocab")
if not vocab_dir.exists():
vocab_dir.mkdir()
vocab1.to_disk(vocab_dir)
vocab2 = Vocab().from_disk(vocab_dir)
print("lang", vocab2.lang)
nlp2 = spacy.blank("en", vocab=vocab2)
nlp_dir = ensure_path(d / "nlp")
if not nlp_dir.exists():
nlp_dir.mkdir()
nlp2.to_disk(nlp_dir)
nlp3 = load_model(nlp_dir)
assert nlp3.lang == "en"
def test_issue4120(en_vocab):
"""Test that matches without a final {OP: ?} token are returned."""
matcher = Matcher(en_vocab)
matcher.add("TEST", [[{"ORTH": "a"}, {"OP": "?"}]])
doc1 = Doc(en_vocab, words=["a"])
assert len(matcher(doc1)) == 1 # works
doc2 = Doc(en_vocab, words=["a", "b", "c"])
assert len(matcher(doc2)) == 2 # fixed
matcher = Matcher(en_vocab)
matcher.add("TEST", [[{"ORTH": "a"}, {"OP": "?"}, {"ORTH": "b"}]])
doc3 = Doc(en_vocab, words=["a", "b", "b", "c"])
assert len(matcher(doc3)) == 2 # works
matcher = Matcher(en_vocab)
matcher.add("TEST", [[{"ORTH": "a"}, {"OP": "?"}, {"ORTH": "b", "OP": "?"}]])
doc4 = Doc(en_vocab, words=["a", "b", "b", "c"])
assert len(matcher(doc4)) == 3 # fixed
def test_issue4133(en_vocab):
nlp = English()
vocab_bytes = nlp.vocab.to_bytes()
words = ["Apple", "is", "looking", "at", "buying", "a", "startup"]
pos = ["NOUN", "VERB", "ADP", "VERB", "PROPN", "NOUN", "ADP"]
doc = Doc(en_vocab, words=words)
for i, token in enumerate(doc):
token.pos_ = pos[i]
# usually this is already True when starting from proper models instead of blank English
doc.is_tagged = True
doc_bytes = doc.to_bytes()
vocab = Vocab()
vocab = vocab.from_bytes(vocab_bytes)
doc = Doc(vocab).from_bytes(doc_bytes)
actual = []
for token in doc:
actual.append(token.pos_)
assert actual == pos
def test_issue4190():
def customize_tokenizer(nlp):
prefix_re = compile_prefix_regex(nlp.Defaults.prefixes)
suffix_re = compile_suffix_regex(nlp.Defaults.suffixes)
infix_re = compile_infix_regex(nlp.Defaults.infixes)
# Remove all exceptions where a single letter is followed by a period (e.g. 'h.')
exceptions = {
k: v
for k, v in dict(nlp.Defaults.tokenizer_exceptions).items()
if not (len(k) == 2 and k[1] == ".")
}
new_tokenizer = Tokenizer(
nlp.vocab,
exceptions,
prefix_search=prefix_re.search,
suffix_search=suffix_re.search,
infix_finditer=infix_re.finditer,
token_match=nlp.tokenizer.token_match,
)
nlp.tokenizer = new_tokenizer
test_string = "Test c."
# Load default language
nlp_1 = English()
doc_1a = nlp_1(test_string)
result_1a = [token.text for token in doc_1a] # noqa: F841
# Modify tokenizer
customize_tokenizer(nlp_1)
doc_1b = nlp_1(test_string)
result_1b = [token.text for token in doc_1b]
# Save and Reload
with make_tempdir() as model_dir:
nlp_1.to_disk(model_dir)
nlp_2 = load_model(model_dir)
# This should be the modified tokenizer
doc_2 = nlp_2(test_string)
result_2 = [token.text for token in doc_2]
assert result_1b == result_2
@pytest.mark.filterwarnings("ignore::UserWarning")
def test_issue4267():
""" Test that running an entity_ruler after ner gives consistent results"""
nlp = English()
ner = nlp.create_pipe("ner")
ner.add_label("PEOPLE")
nlp.add_pipe(ner)
nlp.begin_training()
assert "ner" in nlp.pipe_names
# assert that we have correct IOB annotations
doc1 = nlp("hi")
assert doc1.is_nered
for token in doc1:
assert token.ent_iob == 2
# add entity ruler and run again
ruler = EntityRuler(nlp)
patterns = [{"label": "SOFTWARE", "pattern": "spacy"}]
ruler.add_patterns(patterns)
nlp.add_pipe(ruler)
assert "entity_ruler" in nlp.pipe_names
assert "ner" in nlp.pipe_names
# assert that we still have correct IOB annotations
doc2 = nlp("hi")
assert doc2.is_nered
for token in doc2:
assert token.ent_iob == 2
def test_issue4272():
"""Test that lookup table can be accessed from Token.lemma if no POS tags
are available."""
nlp = Greek()
doc = nlp("Χθες")
assert doc[0].lemma_
def test_multiple_predictions():
class DummyPipe(Pipe):
def __init__(self):
self.model = "dummy_model"
def predict(self, docs):
return ([1, 2, 3], [4, 5, 6])
def set_annotations(self, docs, scores):
return docs
nlp = Language()
doc = nlp.make_doc("foo")
dummy_pipe = DummyPipe()
dummy_pipe(doc)
@pytest.mark.skip(reason="removed Beam stuff during the Example/GoldParse refactor")
def test_issue4313():
""" This should not crash or exit with some strange error code """
beam_width = 16
beam_density = 0.0001
nlp = English()
config = {
"learn_tokens": False,
"min_action_freq": 30,
"beam_width": 1,
"beam_update_prob": 1.0,
}
ner = EntityRecognizer(nlp.vocab, default_ner(), **config)
ner.add_label("SOME_LABEL")
ner.begin_training([])
nlp.add_pipe(ner)
# add a new label to the doc
doc = nlp("What do you think about Apple ?")
assert len(ner.labels) == 1
assert "SOME_LABEL" in ner.labels
apple_ent = Span(doc, 5, 6, label="MY_ORG")
doc.ents = list(doc.ents) + [apple_ent]
# ensure the beam_parse still works with the new label
docs = [doc]
beams = nlp.entity.beam_parse(
docs, beam_width=beam_width, beam_density=beam_density
)
for doc, beam in zip(docs, beams):
entity_scores = defaultdict(float)
for score, ents in nlp.entity.moves.get_beam_parses(beam):
for start, end, label in ents:
entity_scores[(start, end, label)] += score
@pytest.mark.filterwarnings("ignore::UserWarning")
def test_issue4348():
"""Test that training the tagger with empty data, doesn't throw errors"""
nlp = English()
example = Example.from_dict(nlp.make_doc(""), {"tags": []})
TRAIN_DATA = [example, example]
tagger = nlp.create_pipe("tagger")
nlp.add_pipe(tagger)
optimizer = nlp.begin_training()
for i in range(5):
losses = {}
batches = minibatch(TRAIN_DATA, size=compounding(4.0, 32.0, 1.001))
for batch in batches:
nlp.update(batch, sgd=optimizer, losses=losses)
def test_issue4367():
"""Test that docbin init goes well"""
DocBin()
DocBin(attrs=["LEMMA"])
DocBin(attrs=["LEMMA", "ENT_IOB", "ENT_TYPE"])
def test_issue4373():
"""Test that PhraseMatcher.vocab can be accessed (like Matcher.vocab)."""
matcher = Matcher(Vocab())
assert isinstance(matcher.vocab, Vocab)
matcher = PhraseMatcher(Vocab())
assert isinstance(matcher.vocab, Vocab)
def test_issue4402():
json_data = {
"id": 0,
"paragraphs": [
{
"raw": "How should I cook bacon in an oven?\nI've heard of people cooking bacon in an oven.",
"sentences": [
{
"tokens": [
{"id": 0, "orth": "How", "ner": "O"},
{"id": 1, "orth": "should", "ner": "O"},
{"id": 2, "orth": "I", "ner": "O"},
{"id": 3, "orth": "cook", "ner": "O"},
{"id": 4, "orth": "bacon", "ner": "O"},
{"id": 5, "orth": "in", "ner": "O"},
{"id": 6, "orth": "an", "ner": "O"},
{"id": 7, "orth": "oven", "ner": "O"},
{"id": 8, "orth": "?", "ner": "O"},
],
"brackets": [],
},
{
"tokens": [
{"id": 9, "orth": "\n", "ner": "O"},
{"id": 10, "orth": "I", "ner": "O"},
{"id": 11, "orth": "'ve", "ner": "O"},
{"id": 12, "orth": "heard", "ner": "O"},
{"id": 13, "orth": "of", "ner": "O"},
{"id": 14, "orth": "people", "ner": "O"},
{"id": 15, "orth": "cooking", "ner": "O"},
{"id": 16, "orth": "bacon", "ner": "O"},
{"id": 17, "orth": "in", "ner": "O"},
{"id": 18, "orth": "an", "ner": "O"},
{"id": 19, "orth": "oven", "ner": "O"},
{"id": 20, "orth": ".", "ner": "O"},
],
"brackets": [],
},
],
"cats": [
{"label": "baking", "value": 1.0},
{"label": "not_baking", "value": 0.0},
],
},
{
"raw": "What is the difference between white and brown eggs?\n",
"sentences": [
{
"tokens": [
{"id": 0, "orth": "What", "ner": "O"},
{"id": 1, "orth": "is", "ner": "O"},
{"id": 2, "orth": "the", "ner": "O"},
{"id": 3, "orth": "difference", "ner": "O"},
{"id": 4, "orth": "between", "ner": "O"},
{"id": 5, "orth": "white", "ner": "O"},
{"id": 6, "orth": "and", "ner": "O"},
{"id": 7, "orth": "brown", "ner": "O"},
{"id": 8, "orth": "eggs", "ner": "O"},
{"id": 9, "orth": "?", "ner": "O"},
],
"brackets": [],
},
{"tokens": [{"id": 10, "orth": "\n", "ner": "O"}], "brackets": []},
],
"cats": [
{"label": "baking", "value": 0.0},
{"label": "not_baking", "value": 1.0},
],
},
],
}
nlp = English()
attrs = ["ORTH", "SENT_START", "ENT_IOB", "ENT_TYPE"]
with make_tempdir() as tmpdir:
output_file = tmpdir / "test4402.spacy"
docs = json2docs([json_data])
data = DocBin(docs=docs, attrs=attrs).to_bytes()
with output_file.open("wb") as file_:
file_.write(data)
corpus = Corpus(train_loc=str(output_file), dev_loc=str(output_file))
train_data = list(corpus.train_dataset(nlp))
assert len(train_data) == 2
split_train_data = []
for eg in train_data:
split_train_data.extend(eg.split_sents())
assert len(split_train_data) == 4