mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-28 10:14:07 +03:00
b052b1b47f
* Fix batching regression Some time ago, the spaCy v4 branch switched to the new Thinc v9 schedule. However, this introduced an error in how batching is handed. In the PR, the batchers were changed to keep track of their step, so that the step can be passed to the schedule. However, the issue is that the training loop repeatedly calls the batching functions (rather than using an infinite generator/iterator). So, the step and therefore the schedule would be reset each epoch. Before the schedule switch we didn't have this issue, because the old schedules were stateful. This PR fixes this issue by reverting the batching functions to use a (stateful) generator. Their registry functions do accept a `Schedule` and we convert `Schedule`s to generators. * Update batcher docs * Docstring fixes * Make minibatch take iterables again as well * Bump thinc requirement to 9.0.0.dev2 * Use type declaration * Convert another comment into a proper type declaration
970 lines
36 KiB
Python
970 lines
36 KiB
Python
from typing import cast
|
|
import random
|
|
|
|
import numpy.random
|
|
import pytest
|
|
from numpy.testing import assert_almost_equal
|
|
from thinc.api import Config, compounding, fix_random_seed, get_current_ops
|
|
from wasabi import msg
|
|
|
|
import spacy
|
|
from spacy import util
|
|
from spacy.cli.evaluate import print_prf_per_type, print_textcats_auc_per_cat
|
|
from spacy.lang.en import English
|
|
from spacy.language import Language
|
|
from spacy.pipeline import TextCategorizer, TrainablePipe
|
|
from spacy.pipeline.textcat import single_label_bow_config
|
|
from spacy.pipeline.textcat import single_label_cnn_config
|
|
from spacy.pipeline.textcat import single_label_default_config
|
|
from spacy.pipeline.textcat_multilabel import multi_label_bow_config
|
|
from spacy.pipeline.textcat_multilabel import multi_label_cnn_config
|
|
from spacy.pipeline.textcat_multilabel import multi_label_default_config
|
|
from spacy.pipeline.tok2vec import DEFAULT_TOK2VEC_MODEL
|
|
from spacy.scorer import Scorer
|
|
from spacy.tokens import Doc, DocBin
|
|
from spacy.training import Example
|
|
from spacy.training.initialize import init_nlp
|
|
|
|
from ..util import make_tempdir
|
|
|
|
TRAIN_DATA_SINGLE_LABEL = [
|
|
("I'm so happy.", {"cats": {"POSITIVE": 1.0, "NEGATIVE": 0.0}}),
|
|
("I'm so angry", {"cats": {"POSITIVE": 0.0, "NEGATIVE": 1.0}}),
|
|
]
|
|
|
|
TRAIN_DATA_MULTI_LABEL = [
|
|
("I'm angry and confused", {"cats": {"ANGRY": 1.0, "CONFUSED": 1.0, "HAPPY": 0.0}}),
|
|
("I'm confused but happy", {"cats": {"ANGRY": 0.0, "CONFUSED": 1.0, "HAPPY": 1.0}}),
|
|
]
|
|
|
|
|
|
def make_get_examples_single_label(nlp):
|
|
train_examples = []
|
|
for t in TRAIN_DATA_SINGLE_LABEL:
|
|
train_examples.append(Example.from_dict(nlp.make_doc(t[0]), t[1]))
|
|
|
|
def get_examples():
|
|
return train_examples
|
|
|
|
return get_examples
|
|
|
|
|
|
def make_get_examples_multi_label(nlp):
|
|
train_examples = []
|
|
for t in TRAIN_DATA_MULTI_LABEL:
|
|
train_examples.append(Example.from_dict(nlp.make_doc(t[0]), t[1]))
|
|
|
|
def get_examples():
|
|
return train_examples
|
|
|
|
return get_examples
|
|
|
|
|
|
@pytest.mark.issue(3611)
|
|
def test_issue3611():
|
|
"""Test whether adding n-grams in the textcat works even when n > token length of some docs"""
|
|
unique_classes = ["offensive", "inoffensive"]
|
|
x_train = [
|
|
"This is an offensive text",
|
|
"This is the second offensive text",
|
|
"inoff",
|
|
]
|
|
y_train = ["offensive", "offensive", "inoffensive"]
|
|
nlp = spacy.blank("en")
|
|
# preparing the data
|
|
train_data = []
|
|
for text, train_instance in zip(x_train, y_train):
|
|
cat_dict = {label: label == train_instance for label in unique_classes}
|
|
train_data.append(Example.from_dict(nlp.make_doc(text), {"cats": cat_dict}))
|
|
# add a text categorizer component
|
|
model = {
|
|
"@architectures": "spacy.TextCatBOW.v1",
|
|
"exclusive_classes": True,
|
|
"ngram_size": 2,
|
|
"no_output_layer": False,
|
|
}
|
|
textcat = nlp.add_pipe("textcat", config={"model": model}, last=True)
|
|
for label in unique_classes:
|
|
textcat.add_label(label)
|
|
# training the network
|
|
with nlp.select_pipes(enable="textcat"):
|
|
optimizer = nlp.initialize()
|
|
for i in range(3):
|
|
losses = {}
|
|
batches = util.minibatch(
|
|
train_data, size=compounding(4.0, 32.0, 1.001).to_generator()
|
|
)
|
|
|
|
for batch in batches:
|
|
nlp.update(examples=batch, sgd=optimizer, drop=0.1, losses=losses)
|
|
|
|
|
|
@pytest.mark.issue(4030)
|
|
def test_issue4030():
|
|
"""Test whether textcat works fine with empty doc"""
|
|
unique_classes = ["offensive", "inoffensive"]
|
|
x_train = [
|
|
"This is an offensive text",
|
|
"This is the second offensive text",
|
|
"inoff",
|
|
]
|
|
y_train = ["offensive", "offensive", "inoffensive"]
|
|
nlp = spacy.blank("en")
|
|
# preparing the data
|
|
train_data = []
|
|
for text, train_instance in zip(x_train, y_train):
|
|
cat_dict = {label: label == train_instance for label in unique_classes}
|
|
train_data.append(Example.from_dict(nlp.make_doc(text), {"cats": cat_dict}))
|
|
# add a text categorizer component
|
|
model = {
|
|
"@architectures": "spacy.TextCatBOW.v1",
|
|
"exclusive_classes": True,
|
|
"ngram_size": 2,
|
|
"no_output_layer": False,
|
|
}
|
|
textcat = nlp.add_pipe("textcat", config={"model": model}, last=True)
|
|
for label in unique_classes:
|
|
textcat.add_label(label)
|
|
# training the network
|
|
with nlp.select_pipes(enable="textcat"):
|
|
optimizer = nlp.initialize()
|
|
for i in range(3):
|
|
losses = {}
|
|
batches = util.minibatch(
|
|
train_data, size=compounding(4.0, 32.0, 1.001).to_generator()
|
|
)
|
|
|
|
for batch in batches:
|
|
nlp.update(examples=batch, sgd=optimizer, drop=0.1, losses=losses)
|
|
# processing of an empty doc should result in 0.0 for all categories
|
|
doc = nlp("")
|
|
assert doc.cats["offensive"] == 0.0
|
|
assert doc.cats["inoffensive"] == 0.0
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"textcat_config",
|
|
[
|
|
single_label_default_config,
|
|
single_label_bow_config,
|
|
single_label_cnn_config,
|
|
multi_label_default_config,
|
|
multi_label_bow_config,
|
|
multi_label_cnn_config,
|
|
],
|
|
)
|
|
@pytest.mark.issue(5551)
|
|
def test_issue5551(textcat_config):
|
|
"""Test that after fixing the random seed, the results of the pipeline are truly identical"""
|
|
component = "textcat"
|
|
|
|
pipe_cfg = Config().from_str(textcat_config)
|
|
results = []
|
|
for i in range(3):
|
|
fix_random_seed(0)
|
|
nlp = English()
|
|
text = "Once hot, form ping-pong-ball-sized balls of the mixture, each weighing roughly 25 g."
|
|
annots = {"cats": {"Labe1": 1.0, "Label2": 0.0, "Label3": 0.0}}
|
|
pipe = nlp.add_pipe(component, config=pipe_cfg, last=True)
|
|
for label in set(annots["cats"]):
|
|
pipe.add_label(label)
|
|
# Train
|
|
nlp.initialize()
|
|
doc = nlp.make_doc(text)
|
|
nlp.update([Example.from_dict(doc, annots)])
|
|
# Store the result of each iteration
|
|
result = pipe.model.predict([doc])
|
|
results.append(result[0])
|
|
# All results should be the same because of the fixed seed
|
|
assert len(results) == 3
|
|
ops = get_current_ops()
|
|
assert_almost_equal(ops.to_numpy(results[0]), ops.to_numpy(results[1]), decimal=5)
|
|
assert_almost_equal(ops.to_numpy(results[0]), ops.to_numpy(results[2]), decimal=5)
|
|
|
|
|
|
CONFIG_ISSUE_6908 = """
|
|
[paths]
|
|
train = "TRAIN_PLACEHOLDER"
|
|
raw = null
|
|
init_tok2vec = null
|
|
vectors = null
|
|
|
|
[system]
|
|
seed = 0
|
|
gpu_allocator = null
|
|
|
|
[nlp]
|
|
lang = "en"
|
|
pipeline = ["textcat"]
|
|
tokenizer = {"@tokenizers":"spacy.Tokenizer.v1"}
|
|
disabled = []
|
|
before_creation = null
|
|
after_creation = null
|
|
after_pipeline_creation = null
|
|
batch_size = 1000
|
|
|
|
[components]
|
|
|
|
[components.textcat]
|
|
factory = "TEXTCAT_PLACEHOLDER"
|
|
|
|
[corpora]
|
|
|
|
[corpora.train]
|
|
@readers = "spacy.Corpus.v1"
|
|
path = ${paths:train}
|
|
|
|
[corpora.dev]
|
|
@readers = "spacy.Corpus.v1"
|
|
path = ${paths:train}
|
|
|
|
|
|
[training]
|
|
train_corpus = "corpora.train"
|
|
dev_corpus = "corpora.dev"
|
|
seed = ${system.seed}
|
|
gpu_allocator = ${system.gpu_allocator}
|
|
frozen_components = []
|
|
before_to_disk = null
|
|
|
|
[pretraining]
|
|
|
|
[initialize]
|
|
vectors = ${paths.vectors}
|
|
init_tok2vec = ${paths.init_tok2vec}
|
|
vocab_data = null
|
|
lookups = null
|
|
before_init = null
|
|
after_init = null
|
|
|
|
[initialize.components]
|
|
|
|
[initialize.components.textcat]
|
|
labels = ['label1', 'label2']
|
|
|
|
[initialize.tokenizer]
|
|
"""
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"component_name",
|
|
["textcat", "textcat_multilabel"],
|
|
)
|
|
@pytest.mark.issue(6908)
|
|
def test_issue6908(component_name):
|
|
"""Test intializing textcat with labels in a list"""
|
|
|
|
def create_data(out_file):
|
|
nlp = spacy.blank("en")
|
|
doc = nlp.make_doc("Some text")
|
|
doc.cats = {"label1": 0, "label2": 1}
|
|
out_data = DocBin(docs=[doc]).to_bytes()
|
|
with out_file.open("wb") as file_:
|
|
file_.write(out_data)
|
|
|
|
with make_tempdir() as tmp_path:
|
|
train_path = tmp_path / "train.spacy"
|
|
create_data(train_path)
|
|
config_str = CONFIG_ISSUE_6908.replace("TEXTCAT_PLACEHOLDER", component_name)
|
|
config_str = config_str.replace("TRAIN_PLACEHOLDER", train_path.as_posix())
|
|
config = util.load_config_from_str(config_str)
|
|
init_nlp(config)
|
|
|
|
|
|
@pytest.mark.issue(7019)
|
|
def test_issue7019():
|
|
scores = {"LABEL_A": 0.39829102, "LABEL_B": 0.938298329382, "LABEL_C": None}
|
|
print_textcats_auc_per_cat(msg, scores)
|
|
scores = {
|
|
"LABEL_A": {"p": 0.3420302, "r": 0.3929020, "f": 0.49823928932},
|
|
"LABEL_B": {"p": None, "r": None, "f": None},
|
|
}
|
|
print_prf_per_type(msg, scores, name="foo", type="bar")
|
|
|
|
|
|
@pytest.mark.issue(9904)
|
|
def test_issue9904():
|
|
nlp = Language()
|
|
textcat = nlp.add_pipe("textcat")
|
|
get_examples = make_get_examples_single_label(nlp)
|
|
nlp.initialize(get_examples)
|
|
|
|
examples = get_examples()
|
|
scores = textcat.predict([eg.predicted for eg in examples])["probabilities"]
|
|
|
|
loss = textcat.get_loss(examples, scores)[0]
|
|
loss_double_bs = textcat.get_loss(examples * 2, scores.repeat(2, axis=0))[0]
|
|
assert loss == pytest.approx(loss_double_bs)
|
|
|
|
|
|
@pytest.mark.skip(reason="Test is flakey when run with others")
|
|
def test_simple_train():
|
|
nlp = Language()
|
|
textcat = nlp.add_pipe("textcat")
|
|
textcat.add_label("answer")
|
|
nlp.initialize()
|
|
for i in range(5):
|
|
for text, answer in [
|
|
("aaaa", 1.0),
|
|
("bbbb", 0),
|
|
("aa", 1.0),
|
|
("bbbbbbbbb", 0.0),
|
|
("aaaaaa", 1),
|
|
]:
|
|
nlp.update((text, {"cats": {"answer": answer}}))
|
|
doc = nlp("aaa")
|
|
assert "answer" in doc.cats
|
|
assert doc.cats["answer"] >= 0.5
|
|
|
|
|
|
@pytest.mark.skip(reason="Test is flakey when run with others")
|
|
def test_textcat_learns_multilabel():
|
|
random.seed(5)
|
|
numpy.random.seed(5)
|
|
docs = []
|
|
nlp = Language()
|
|
letters = ["a", "b", "c"]
|
|
for w1 in letters:
|
|
for w2 in letters:
|
|
cats = {letter: float(w2 == letter) for letter in letters}
|
|
docs.append((Doc(nlp.vocab, words=["d"] * 3 + [w1, w2] + ["d"] * 3), cats))
|
|
random.shuffle(docs)
|
|
textcat = TextCategorizer(nlp.vocab, width=8)
|
|
for letter in letters:
|
|
textcat.add_label(letter)
|
|
optimizer = textcat.initialize(lambda: [])
|
|
for i in range(30):
|
|
losses = {}
|
|
examples = [Example.from_dict(doc, {"cats": cats}) for doc, cat in docs]
|
|
textcat.update(examples, sgd=optimizer, losses=losses)
|
|
random.shuffle(docs)
|
|
for w1 in letters:
|
|
for w2 in letters:
|
|
doc = Doc(nlp.vocab, words=["d"] * 3 + [w1, w2] + ["d"] * 3)
|
|
truth = {letter: w2 == letter for letter in letters}
|
|
textcat(doc)
|
|
for cat, score in doc.cats.items():
|
|
if not truth[cat]:
|
|
assert score < 0.5
|
|
else:
|
|
assert score > 0.5
|
|
|
|
|
|
@pytest.mark.parametrize("name", ["textcat", "textcat_multilabel"])
|
|
def test_label_types(name):
|
|
nlp = Language()
|
|
textcat = nlp.add_pipe(name)
|
|
textcat.add_label("answer")
|
|
with pytest.raises(ValueError):
|
|
textcat.add_label(9)
|
|
# textcat requires at least two labels
|
|
if name == "textcat":
|
|
with pytest.raises(ValueError):
|
|
nlp.initialize()
|
|
else:
|
|
nlp.initialize()
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"name,get_examples",
|
|
[
|
|
("textcat", make_get_examples_single_label),
|
|
("textcat_multilabel", make_get_examples_multi_label),
|
|
],
|
|
)
|
|
def test_invalid_label_value(name, get_examples):
|
|
nlp = Language()
|
|
textcat = nlp.add_pipe(name)
|
|
example_getter = get_examples(nlp)
|
|
|
|
def invalid_examples():
|
|
# make one example with an invalid score
|
|
examples = example_getter()
|
|
ref = examples[0].reference
|
|
key = list(ref.cats.keys())[0]
|
|
ref.cats[key] = 2.0
|
|
return examples
|
|
|
|
with pytest.raises(ValueError):
|
|
nlp.initialize(get_examples=invalid_examples)
|
|
|
|
|
|
@pytest.mark.parametrize("name", ["textcat", "textcat_multilabel"])
|
|
def test_no_label(name):
|
|
nlp = Language()
|
|
nlp.add_pipe(name)
|
|
with pytest.raises(ValueError):
|
|
nlp.initialize()
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"name,get_examples",
|
|
[
|
|
("textcat", make_get_examples_single_label),
|
|
("textcat_multilabel", make_get_examples_multi_label),
|
|
],
|
|
)
|
|
def test_implicit_label(name, get_examples):
|
|
nlp = Language()
|
|
nlp.add_pipe(name)
|
|
nlp.initialize(get_examples=get_examples(nlp))
|
|
|
|
|
|
# fmt: off
|
|
@pytest.mark.slow
|
|
@pytest.mark.parametrize(
|
|
"name,textcat_config",
|
|
[
|
|
# BOW
|
|
("textcat", {"@architectures": "spacy.TextCatBOW.v1", "exclusive_classes": True, "no_output_layer": False, "ngram_size": 3}),
|
|
("textcat", {"@architectures": "spacy.TextCatBOW.v1", "exclusive_classes": True, "no_output_layer": True, "ngram_size": 3}),
|
|
("textcat_multilabel", {"@architectures": "spacy.TextCatBOW.v1", "exclusive_classes": False, "no_output_layer": False, "ngram_size": 3}),
|
|
("textcat_multilabel", {"@architectures": "spacy.TextCatBOW.v1", "exclusive_classes": False, "no_output_layer": True, "ngram_size": 3}),
|
|
# ENSEMBLE V1
|
|
("textcat", {"@architectures": "spacy.TextCatEnsemble.v1", "exclusive_classes": False, "pretrained_vectors": None, "width": 64, "embed_size": 2000, "conv_depth": 2, "window_size": 1, "ngram_size": 1, "dropout": None}),
|
|
("textcat_multilabel", {"@architectures": "spacy.TextCatEnsemble.v1", "exclusive_classes": False, "pretrained_vectors": None, "width": 64, "embed_size": 2000, "conv_depth": 2, "window_size": 1, "ngram_size": 1, "dropout": None}),
|
|
# ENSEMBLE V2
|
|
("textcat", {"@architectures": "spacy.TextCatEnsemble.v2", "tok2vec": DEFAULT_TOK2VEC_MODEL, "linear_model": {"@architectures": "spacy.TextCatBOW.v1", "exclusive_classes": True, "no_output_layer": False, "ngram_size": 3}}),
|
|
("textcat", {"@architectures": "spacy.TextCatEnsemble.v2", "tok2vec": DEFAULT_TOK2VEC_MODEL, "linear_model": {"@architectures": "spacy.TextCatBOW.v1", "exclusive_classes": True, "no_output_layer": True, "ngram_size": 3}}),
|
|
("textcat_multilabel", {"@architectures": "spacy.TextCatEnsemble.v2", "tok2vec": DEFAULT_TOK2VEC_MODEL, "linear_model": {"@architectures": "spacy.TextCatBOW.v1", "exclusive_classes": False, "no_output_layer": False, "ngram_size": 3}}),
|
|
("textcat_multilabel", {"@architectures": "spacy.TextCatEnsemble.v2", "tok2vec": DEFAULT_TOK2VEC_MODEL, "linear_model": {"@architectures": "spacy.TextCatBOW.v1", "exclusive_classes": False, "no_output_layer": True, "ngram_size": 3}}),
|
|
# CNN
|
|
("textcat", {"@architectures": "spacy.TextCatCNN.v1", "tok2vec": DEFAULT_TOK2VEC_MODEL, "exclusive_classes": True}),
|
|
("textcat_multilabel", {"@architectures": "spacy.TextCatCNN.v1", "tok2vec": DEFAULT_TOK2VEC_MODEL, "exclusive_classes": False}),
|
|
],
|
|
)
|
|
# fmt: on
|
|
def test_no_resize(name, textcat_config):
|
|
"""The old textcat architectures weren't resizable"""
|
|
nlp = Language()
|
|
pipe_config = {"model": textcat_config}
|
|
textcat = nlp.add_pipe(name, config=pipe_config)
|
|
textcat.add_label("POSITIVE")
|
|
textcat.add_label("NEGATIVE")
|
|
nlp.initialize()
|
|
assert textcat.model.maybe_get_dim("nO") in [2, None]
|
|
# this throws an error because the textcat can't be resized after initialization
|
|
with pytest.raises(ValueError):
|
|
textcat.add_label("NEUTRAL")
|
|
|
|
|
|
# fmt: off
|
|
@pytest.mark.parametrize(
|
|
"name,textcat_config",
|
|
[
|
|
# BOW
|
|
("textcat", {"@architectures": "spacy.TextCatBOW.v2", "exclusive_classes": True, "no_output_layer": False, "ngram_size": 3}),
|
|
("textcat", {"@architectures": "spacy.TextCatBOW.v2", "exclusive_classes": True, "no_output_layer": True, "ngram_size": 3}),
|
|
("textcat_multilabel", {"@architectures": "spacy.TextCatBOW.v2", "exclusive_classes": False, "no_output_layer": False, "ngram_size": 3}),
|
|
("textcat_multilabel", {"@architectures": "spacy.TextCatBOW.v2", "exclusive_classes": False, "no_output_layer": True, "ngram_size": 3}),
|
|
# CNN
|
|
("textcat", {"@architectures": "spacy.TextCatCNN.v2", "tok2vec": DEFAULT_TOK2VEC_MODEL, "exclusive_classes": True}),
|
|
("textcat_multilabel", {"@architectures": "spacy.TextCatCNN.v2", "tok2vec": DEFAULT_TOK2VEC_MODEL, "exclusive_classes": False}),
|
|
],
|
|
)
|
|
# fmt: on
|
|
def test_resize(name, textcat_config):
|
|
"""The new textcat architectures are resizable"""
|
|
nlp = Language()
|
|
pipe_config = {"model": textcat_config}
|
|
textcat = nlp.add_pipe(name, config=pipe_config)
|
|
textcat.add_label("POSITIVE")
|
|
textcat.add_label("NEGATIVE")
|
|
assert textcat.model.maybe_get_dim("nO") in [2, None]
|
|
nlp.initialize()
|
|
assert textcat.model.maybe_get_dim("nO") in [2, None]
|
|
textcat.add_label("NEUTRAL")
|
|
assert textcat.model.maybe_get_dim("nO") in [3, None]
|
|
|
|
|
|
# fmt: off
|
|
@pytest.mark.parametrize(
|
|
"name,textcat_config",
|
|
[
|
|
# BOW
|
|
("textcat", {"@architectures": "spacy.TextCatBOW.v2", "exclusive_classes": True, "no_output_layer": False, "ngram_size": 3}),
|
|
("textcat", {"@architectures": "spacy.TextCatBOW.v2", "exclusive_classes": True, "no_output_layer": True, "ngram_size": 3}),
|
|
("textcat_multilabel", {"@architectures": "spacy.TextCatBOW.v2", "exclusive_classes": False, "no_output_layer": False, "ngram_size": 3}),
|
|
("textcat_multilabel", {"@architectures": "spacy.TextCatBOW.v2", "exclusive_classes": False, "no_output_layer": True, "ngram_size": 3}),
|
|
# CNN
|
|
("textcat", {"@architectures": "spacy.TextCatCNN.v2", "tok2vec": DEFAULT_TOK2VEC_MODEL, "exclusive_classes": True}),
|
|
("textcat_multilabel", {"@architectures": "spacy.TextCatCNN.v2", "tok2vec": DEFAULT_TOK2VEC_MODEL, "exclusive_classes": False}),
|
|
],
|
|
)
|
|
# fmt: on
|
|
def test_resize_same_results(name, textcat_config):
|
|
# Ensure that the resized textcat classifiers still produce the same results for old labels
|
|
fix_random_seed(0)
|
|
nlp = English()
|
|
pipe_config = {"model": textcat_config}
|
|
textcat = nlp.add_pipe(name, config=pipe_config)
|
|
|
|
train_examples = []
|
|
for text, annotations in TRAIN_DATA_SINGLE_LABEL:
|
|
train_examples.append(Example.from_dict(nlp.make_doc(text), annotations))
|
|
optimizer = nlp.initialize(get_examples=lambda: train_examples)
|
|
assert textcat.model.maybe_get_dim("nO") in [2, None]
|
|
|
|
for i in range(5):
|
|
losses = {}
|
|
nlp.update(train_examples, sgd=optimizer, losses=losses)
|
|
|
|
# test the trained model before resizing
|
|
test_text = "I am happy."
|
|
doc = nlp(test_text)
|
|
assert len(doc.cats) == 2
|
|
pos_pred = doc.cats["POSITIVE"]
|
|
neg_pred = doc.cats["NEGATIVE"]
|
|
|
|
# test the trained model again after resizing
|
|
textcat.add_label("NEUTRAL")
|
|
doc = nlp(test_text)
|
|
assert len(doc.cats) == 3
|
|
assert doc.cats["POSITIVE"] == pos_pred
|
|
assert doc.cats["NEGATIVE"] == neg_pred
|
|
assert doc.cats["NEUTRAL"] <= 1
|
|
|
|
for i in range(5):
|
|
losses = {}
|
|
nlp.update(train_examples, sgd=optimizer, losses=losses)
|
|
|
|
# test the trained model again after training further with new label
|
|
doc = nlp(test_text)
|
|
assert len(doc.cats) == 3
|
|
assert doc.cats["POSITIVE"] != pos_pred
|
|
assert doc.cats["NEGATIVE"] != neg_pred
|
|
for cat in doc.cats:
|
|
assert doc.cats[cat] <= 1
|
|
|
|
|
|
def test_error_with_multi_labels():
|
|
nlp = Language()
|
|
nlp.add_pipe("textcat")
|
|
train_examples = []
|
|
for text, annotations in TRAIN_DATA_MULTI_LABEL:
|
|
train_examples.append(Example.from_dict(nlp.make_doc(text), annotations))
|
|
with pytest.raises(ValueError):
|
|
nlp.initialize(get_examples=lambda: train_examples)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"name,get_examples, train_data",
|
|
[
|
|
("textcat", make_get_examples_single_label, TRAIN_DATA_SINGLE_LABEL),
|
|
("textcat_multilabel", make_get_examples_multi_label, TRAIN_DATA_MULTI_LABEL),
|
|
],
|
|
)
|
|
def test_initialize_examples(name, get_examples, train_data):
|
|
nlp = Language()
|
|
textcat = nlp.add_pipe(name)
|
|
for text, annotations in train_data:
|
|
for label, value in annotations.get("cats").items():
|
|
textcat.add_label(label)
|
|
# you shouldn't really call this more than once, but for testing it should be fine
|
|
nlp.initialize()
|
|
nlp.initialize(get_examples=get_examples(nlp))
|
|
with pytest.raises(TypeError):
|
|
nlp.initialize(get_examples=lambda: None)
|
|
with pytest.raises(TypeError):
|
|
nlp.initialize(get_examples=get_examples())
|
|
|
|
|
|
def test_is_distillable():
|
|
nlp = English()
|
|
textcat = nlp.add_pipe("textcat")
|
|
assert not textcat.is_distillable
|
|
|
|
|
|
def test_overfitting_IO():
|
|
# Simple test to try and quickly overfit the single-label textcat component - ensuring the ML models work correctly
|
|
fix_random_seed(0)
|
|
nlp = English()
|
|
textcat = nlp.add_pipe("textcat")
|
|
|
|
train_examples = []
|
|
for text, annotations in TRAIN_DATA_SINGLE_LABEL:
|
|
train_examples.append(Example.from_dict(nlp.make_doc(text), annotations))
|
|
optimizer = nlp.initialize(get_examples=lambda: train_examples)
|
|
assert textcat.model.get_dim("nO") == 2
|
|
|
|
for i in range(50):
|
|
losses = {}
|
|
nlp.update(train_examples, sgd=optimizer, losses=losses)
|
|
assert losses["textcat"] < 0.01
|
|
|
|
# test the trained model
|
|
test_text = "I am happy."
|
|
doc = nlp(test_text)
|
|
cats = doc.cats
|
|
assert cats["POSITIVE"] > 0.9
|
|
assert cats["POSITIVE"] + cats["NEGATIVE"] == pytest.approx(1.0, 0.001)
|
|
|
|
# Also test the results are still the same after IO
|
|
with make_tempdir() as tmp_dir:
|
|
nlp.to_disk(tmp_dir)
|
|
nlp2 = util.load_model_from_path(tmp_dir)
|
|
doc2 = nlp2(test_text)
|
|
cats2 = doc2.cats
|
|
assert cats2["POSITIVE"] > 0.9
|
|
assert cats2["POSITIVE"] + cats2["NEGATIVE"] == pytest.approx(1.0, 0.001)
|
|
|
|
# Test scoring
|
|
scores = nlp.evaluate(train_examples)
|
|
assert scores["cats_micro_f"] == 1.0
|
|
assert scores["cats_macro_f"] == 1.0
|
|
assert scores["cats_macro_auc"] == 1.0
|
|
assert scores["cats_score"] == 1.0
|
|
assert "cats_score_desc" in scores
|
|
|
|
# Make sure that running pipe twice, or comparing to call, always amounts to the same predictions
|
|
texts = ["Just a sentence.", "I like green eggs.", "I am happy.", "I eat ham."]
|
|
batch_cats_1 = [doc.cats for doc in nlp.pipe(texts)]
|
|
batch_cats_2 = [doc.cats for doc in nlp.pipe(texts)]
|
|
no_batch_cats = [doc.cats for doc in [nlp(text) for text in texts]]
|
|
for cats_1, cats_2 in zip(batch_cats_1, batch_cats_2):
|
|
for cat in cats_1:
|
|
assert_almost_equal(cats_1[cat], cats_2[cat], decimal=5)
|
|
for cats_1, cats_2 in zip(batch_cats_1, no_batch_cats):
|
|
for cat in cats_1:
|
|
assert_almost_equal(cats_1[cat], cats_2[cat], decimal=5)
|
|
|
|
|
|
def test_overfitting_IO_multi():
|
|
# Simple test to try and quickly overfit the multi-label textcat component - ensuring the ML models work correctly
|
|
fix_random_seed(0)
|
|
nlp = English()
|
|
textcat = nlp.add_pipe("textcat_multilabel")
|
|
|
|
train_examples = []
|
|
for text, annotations in TRAIN_DATA_MULTI_LABEL:
|
|
train_examples.append(Example.from_dict(nlp.make_doc(text), annotations))
|
|
optimizer = nlp.initialize(get_examples=lambda: train_examples)
|
|
assert textcat.model.get_dim("nO") == 3
|
|
|
|
for i in range(100):
|
|
losses = {}
|
|
nlp.update(train_examples, sgd=optimizer, losses=losses)
|
|
assert losses["textcat_multilabel"] < 0.01
|
|
|
|
# test the trained model
|
|
test_text = "I am confused but happy."
|
|
doc = nlp(test_text)
|
|
cats = doc.cats
|
|
assert cats["HAPPY"] > 0.9
|
|
assert cats["CONFUSED"] > 0.9
|
|
|
|
# Also test the results are still the same after IO
|
|
with make_tempdir() as tmp_dir:
|
|
nlp.to_disk(tmp_dir)
|
|
nlp2 = util.load_model_from_path(tmp_dir)
|
|
doc2 = nlp2(test_text)
|
|
cats2 = doc2.cats
|
|
assert cats2["HAPPY"] > 0.9
|
|
assert cats2["CONFUSED"] > 0.9
|
|
|
|
# Test scoring
|
|
scores = nlp.evaluate(train_examples)
|
|
assert scores["cats_micro_f"] == 1.0
|
|
assert scores["cats_macro_f"] == 1.0
|
|
assert "cats_score_desc" in scores
|
|
|
|
# Make sure that running pipe twice, or comparing to call, always amounts to the same predictions
|
|
texts = ["Just a sentence.", "I like green eggs.", "I am happy.", "I eat ham."]
|
|
batch_deps_1 = [doc.cats for doc in nlp.pipe(texts)]
|
|
batch_deps_2 = [doc.cats for doc in nlp.pipe(texts)]
|
|
no_batch_deps = [doc.cats for doc in [nlp(text) for text in texts]]
|
|
for cats_1, cats_2 in zip(batch_deps_1, batch_deps_2):
|
|
for cat in cats_1:
|
|
assert_almost_equal(cats_1[cat], cats_2[cat], decimal=5)
|
|
for cats_1, cats_2 in zip(batch_deps_1, no_batch_deps):
|
|
for cat in cats_1:
|
|
assert_almost_equal(cats_1[cat], cats_2[cat], decimal=5)
|
|
|
|
|
|
# fmt: off
|
|
@pytest.mark.slow
|
|
@pytest.mark.parametrize(
|
|
"name,train_data,textcat_config",
|
|
[
|
|
# BOW V1
|
|
("textcat_multilabel", TRAIN_DATA_MULTI_LABEL, {"@architectures": "spacy.TextCatBOW.v1", "exclusive_classes": False, "ngram_size": 1, "no_output_layer": False}),
|
|
("textcat", TRAIN_DATA_SINGLE_LABEL, {"@architectures": "spacy.TextCatBOW.v1", "exclusive_classes": True, "ngram_size": 4, "no_output_layer": False}),
|
|
# ENSEMBLE V1
|
|
("textcat_multilabel", TRAIN_DATA_MULTI_LABEL, {"@architectures": "spacy.TextCatEnsemble.v1", "exclusive_classes": False, "pretrained_vectors": None, "width": 64, "embed_size": 2000, "conv_depth": 2, "window_size": 1, "ngram_size": 1, "dropout": None}),
|
|
("textcat", TRAIN_DATA_SINGLE_LABEL, {"@architectures": "spacy.TextCatEnsemble.v1", "exclusive_classes": False, "pretrained_vectors": None, "width": 64, "embed_size": 2000, "conv_depth": 2, "window_size": 1, "ngram_size": 1, "dropout": None}),
|
|
# CNN V1
|
|
("textcat", TRAIN_DATA_SINGLE_LABEL, {"@architectures": "spacy.TextCatCNN.v1", "tok2vec": DEFAULT_TOK2VEC_MODEL, "exclusive_classes": True}),
|
|
("textcat_multilabel", TRAIN_DATA_MULTI_LABEL, {"@architectures": "spacy.TextCatCNN.v1", "tok2vec": DEFAULT_TOK2VEC_MODEL, "exclusive_classes": False}),
|
|
# BOW V2
|
|
("textcat_multilabel", TRAIN_DATA_MULTI_LABEL, {"@architectures": "spacy.TextCatBOW.v2", "exclusive_classes": False, "ngram_size": 1, "no_output_layer": False}),
|
|
("textcat", TRAIN_DATA_SINGLE_LABEL, {"@architectures": "spacy.TextCatBOW.v2", "exclusive_classes": True, "ngram_size": 4, "no_output_layer": False}),
|
|
("textcat_multilabel", TRAIN_DATA_MULTI_LABEL, {"@architectures": "spacy.TextCatBOW.v2", "exclusive_classes": False, "ngram_size": 3, "no_output_layer": True}),
|
|
("textcat", TRAIN_DATA_SINGLE_LABEL, {"@architectures": "spacy.TextCatBOW.v2", "exclusive_classes": True, "ngram_size": 2, "no_output_layer": True}),
|
|
# ENSEMBLE V2
|
|
("textcat_multilabel", TRAIN_DATA_MULTI_LABEL, {"@architectures": "spacy.TextCatEnsemble.v2", "tok2vec": DEFAULT_TOK2VEC_MODEL, "linear_model": {"@architectures": "spacy.TextCatBOW.v2", "exclusive_classes": False, "ngram_size": 1, "no_output_layer": False}}),
|
|
("textcat", TRAIN_DATA_SINGLE_LABEL, {"@architectures": "spacy.TextCatEnsemble.v2", "tok2vec": DEFAULT_TOK2VEC_MODEL, "linear_model": {"@architectures": "spacy.TextCatBOW.v2", "exclusive_classes": True, "ngram_size": 5, "no_output_layer": False}}),
|
|
# CNN V2
|
|
("textcat", TRAIN_DATA_SINGLE_LABEL, {"@architectures": "spacy.TextCatCNN.v2", "tok2vec": DEFAULT_TOK2VEC_MODEL, "exclusive_classes": True}),
|
|
("textcat_multilabel", TRAIN_DATA_MULTI_LABEL, {"@architectures": "spacy.TextCatCNN.v2", "tok2vec": DEFAULT_TOK2VEC_MODEL, "exclusive_classes": False}),
|
|
],
|
|
)
|
|
# fmt: on
|
|
def test_textcat_configs(name, train_data, textcat_config):
|
|
pipe_config = {"model": textcat_config}
|
|
nlp = English()
|
|
textcat = nlp.add_pipe(name, config=pipe_config)
|
|
train_examples = []
|
|
for text, annotations in train_data:
|
|
train_examples.append(Example.from_dict(nlp.make_doc(text), annotations))
|
|
for label, value in annotations.get("cats").items():
|
|
textcat.add_label(label)
|
|
optimizer = nlp.initialize()
|
|
for i in range(5):
|
|
losses = {}
|
|
nlp.update(train_examples, sgd=optimizer, losses=losses)
|
|
|
|
|
|
def test_positive_class():
|
|
nlp = English()
|
|
textcat = nlp.add_pipe("textcat")
|
|
get_examples = make_get_examples_single_label(nlp)
|
|
textcat.initialize(get_examples, labels=["POS", "NEG"], positive_label="POS")
|
|
assert textcat.labels == ("POS", "NEG")
|
|
assert textcat.cfg["positive_label"] == "POS"
|
|
|
|
textcat_multilabel = nlp.add_pipe("textcat_multilabel")
|
|
get_examples = make_get_examples_multi_label(nlp)
|
|
with pytest.raises(TypeError):
|
|
textcat_multilabel.initialize(
|
|
get_examples, labels=["POS", "NEG"], positive_label="POS"
|
|
)
|
|
textcat_multilabel.initialize(get_examples, labels=["FICTION", "DRAMA"])
|
|
assert textcat_multilabel.labels == ("FICTION", "DRAMA")
|
|
assert "positive_label" not in textcat_multilabel.cfg
|
|
|
|
|
|
def test_positive_class_not_present():
|
|
nlp = English()
|
|
textcat = nlp.add_pipe("textcat")
|
|
get_examples = make_get_examples_single_label(nlp)
|
|
with pytest.raises(ValueError):
|
|
textcat.initialize(get_examples, labels=["SOME", "THING"], positive_label="POS")
|
|
|
|
|
|
def test_positive_class_not_binary():
|
|
nlp = English()
|
|
textcat = nlp.add_pipe("textcat")
|
|
get_examples = make_get_examples_multi_label(nlp)
|
|
with pytest.raises(ValueError):
|
|
textcat.initialize(
|
|
get_examples, labels=["SOME", "THING", "POS"], positive_label="POS"
|
|
)
|
|
|
|
|
|
def test_textcat_evaluation():
|
|
train_examples = []
|
|
nlp = English()
|
|
ref1 = nlp("one")
|
|
ref1.cats = {"winter": 1.0, "summer": 1.0, "spring": 1.0, "autumn": 1.0}
|
|
pred1 = nlp("one")
|
|
pred1.cats = {"winter": 1.0, "summer": 0.0, "spring": 1.0, "autumn": 1.0}
|
|
train_examples.append(Example(pred1, ref1))
|
|
|
|
ref2 = nlp("two")
|
|
ref2.cats = {"winter": 0.0, "summer": 0.0, "spring": 1.0, "autumn": 1.0}
|
|
pred2 = nlp("two")
|
|
pred2.cats = {"winter": 1.0, "summer": 0.0, "spring": 0.0, "autumn": 1.0}
|
|
train_examples.append(Example(pred2, ref2))
|
|
|
|
scores = Scorer().score_cats(
|
|
train_examples, "cats", labels=["winter", "summer", "spring", "autumn"]
|
|
)
|
|
assert scores["cats_f_per_type"]["winter"]["p"] == 1 / 2
|
|
assert scores["cats_f_per_type"]["winter"]["r"] == 1 / 1
|
|
assert scores["cats_f_per_type"]["summer"]["p"] == 0
|
|
assert scores["cats_f_per_type"]["summer"]["r"] == 0 / 1
|
|
assert scores["cats_f_per_type"]["spring"]["p"] == 1 / 1
|
|
assert scores["cats_f_per_type"]["spring"]["r"] == 1 / 2
|
|
assert scores["cats_f_per_type"]["autumn"]["p"] == 2 / 2
|
|
assert scores["cats_f_per_type"]["autumn"]["r"] == 2 / 2
|
|
|
|
assert scores["cats_micro_p"] == 4 / 5
|
|
assert scores["cats_micro_r"] == 4 / 6
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"multi_label,spring_p",
|
|
[(True, 1 / 1), (False, 1 / 2)],
|
|
)
|
|
def test_textcat_eval_missing(multi_label: bool, spring_p: float):
|
|
"""
|
|
multi-label: the missing 'spring' in gold_doc_2 doesn't incur a penalty
|
|
exclusive labels: the missing 'spring' in gold_doc_2 is interpreted as 0.0"""
|
|
train_examples = []
|
|
nlp = English()
|
|
|
|
ref1 = nlp("one")
|
|
ref1.cats = {"winter": 0.0, "summer": 0.0, "autumn": 0.0, "spring": 1.0}
|
|
pred1 = nlp("one")
|
|
pred1.cats = {"winter": 0.0, "summer": 0.0, "autumn": 0.0, "spring": 1.0}
|
|
train_examples.append(Example(ref1, pred1))
|
|
|
|
ref2 = nlp("two")
|
|
# reference 'spring' is missing, pred 'spring' is 1
|
|
ref2.cats = {"winter": 0.0, "summer": 0.0, "autumn": 1.0}
|
|
pred2 = nlp("two")
|
|
pred2.cats = {"winter": 0.0, "summer": 0.0, "autumn": 0.0, "spring": 1.0}
|
|
train_examples.append(Example(pred2, ref2))
|
|
|
|
scores = Scorer().score_cats(
|
|
train_examples,
|
|
"cats",
|
|
labels=["winter", "summer", "spring", "autumn"],
|
|
multi_label=multi_label,
|
|
)
|
|
assert scores["cats_f_per_type"]["spring"]["p"] == spring_p
|
|
assert scores["cats_f_per_type"]["spring"]["r"] == 1 / 1
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"multi_label,expected_loss",
|
|
[(True, 0), (False, 0.125)],
|
|
)
|
|
def test_textcat_loss(multi_label: bool, expected_loss: float):
|
|
"""
|
|
multi-label: the missing 'spring' in gold_doc_2 doesn't incur an increase in loss
|
|
exclusive labels: the missing 'spring' in gold_doc_2 is interpreted as 0.0 and adds to the loss"""
|
|
train_examples = []
|
|
nlp = English()
|
|
|
|
doc1 = nlp("one")
|
|
cats1 = {"winter": 0.0, "summer": 0.0, "autumn": 0.0, "spring": 1.0}
|
|
train_examples.append(Example.from_dict(doc1, {"cats": cats1}))
|
|
|
|
doc2 = nlp("two")
|
|
cats2 = {"winter": 0.0, "summer": 0.0, "autumn": 1.0}
|
|
train_examples.append(Example.from_dict(doc2, {"cats": cats2}))
|
|
|
|
if multi_label:
|
|
textcat = nlp.add_pipe("textcat_multilabel")
|
|
else:
|
|
textcat = nlp.add_pipe("textcat")
|
|
assert isinstance(textcat, TextCategorizer)
|
|
textcat.initialize(lambda: train_examples)
|
|
scores = textcat.model.ops.asarray(
|
|
[[0.0, 0.0, 0.0, 1.0], [0.0, 0.0, 1.0, 1.0]], dtype="f" # type: ignore
|
|
)
|
|
loss, d_scores = textcat.get_loss(train_examples, scores)
|
|
assert loss == expected_loss
|
|
|
|
|
|
def test_textcat_multilabel_threshold():
|
|
# Ensure the scorer can be called with a different threshold
|
|
nlp = English()
|
|
nlp.add_pipe("textcat_multilabel")
|
|
|
|
train_examples = []
|
|
for text, annotations in TRAIN_DATA_SINGLE_LABEL:
|
|
train_examples.append(Example.from_dict(nlp.make_doc(text), annotations))
|
|
nlp.initialize(get_examples=lambda: train_examples)
|
|
|
|
# score the model (it's not actually trained but that doesn't matter)
|
|
scores = nlp.evaluate(train_examples)
|
|
assert 0 <= scores["cats_score"] <= 1
|
|
|
|
scores = nlp.evaluate(train_examples, scorer_cfg={"threshold": 1.0})
|
|
assert scores["cats_f_per_type"]["POSITIVE"]["r"] == 0
|
|
|
|
scores = nlp.evaluate(train_examples, scorer_cfg={"threshold": 0})
|
|
macro_f = scores["cats_score"]
|
|
assert scores["cats_f_per_type"]["POSITIVE"]["r"] == 1.0
|
|
|
|
scores = nlp.evaluate(
|
|
train_examples, scorer_cfg={"threshold": 0, "positive_label": "POSITIVE"}
|
|
)
|
|
pos_f = scores["cats_score"]
|
|
assert scores["cats_f_per_type"]["POSITIVE"]["r"] == 1.0
|
|
assert pos_f >= macro_f
|
|
|
|
|
|
def test_textcat_multi_threshold():
|
|
# Ensure the scorer can be called with a different threshold
|
|
nlp = English()
|
|
nlp.add_pipe("textcat_multilabel")
|
|
|
|
train_examples = []
|
|
for text, annotations in TRAIN_DATA_SINGLE_LABEL:
|
|
train_examples.append(Example.from_dict(nlp.make_doc(text), annotations))
|
|
nlp.initialize(get_examples=lambda: train_examples)
|
|
|
|
# score the model (it's not actually trained but that doesn't matter)
|
|
scores = nlp.evaluate(train_examples)
|
|
assert 0 <= scores["cats_score"] <= 1
|
|
|
|
scores = nlp.evaluate(train_examples, scorer_cfg={"threshold": 1.0})
|
|
assert scores["cats_f_per_type"]["POSITIVE"]["r"] == 0
|
|
|
|
scores = nlp.evaluate(train_examples, scorer_cfg={"threshold": 0})
|
|
assert scores["cats_f_per_type"]["POSITIVE"]["r"] == 1.0
|
|
|
|
|
|
def test_save_activations():
|
|
nlp = English()
|
|
textcat = cast(TrainablePipe, nlp.add_pipe("textcat"))
|
|
|
|
train_examples = []
|
|
for text, annotations in TRAIN_DATA_SINGLE_LABEL:
|
|
train_examples.append(Example.from_dict(nlp.make_doc(text), annotations))
|
|
nlp.initialize(get_examples=lambda: train_examples)
|
|
nO = textcat.model.get_dim("nO")
|
|
|
|
doc = nlp("This is a test.")
|
|
assert "textcat" not in doc.activations
|
|
|
|
textcat.save_activations = True
|
|
doc = nlp("This is a test.")
|
|
assert list(doc.activations["textcat"].keys()) == ["probabilities"]
|
|
assert doc.activations["textcat"]["probabilities"].shape == (nO,)
|
|
|
|
|
|
def test_save_activations_multi():
|
|
nlp = English()
|
|
textcat = cast(TrainablePipe, nlp.add_pipe("textcat_multilabel"))
|
|
|
|
train_examples = []
|
|
for text, annotations in TRAIN_DATA_MULTI_LABEL:
|
|
train_examples.append(Example.from_dict(nlp.make_doc(text), annotations))
|
|
nlp.initialize(get_examples=lambda: train_examples)
|
|
nO = textcat.model.get_dim("nO")
|
|
|
|
doc = nlp("This is a test.")
|
|
assert "textcat_multilabel" not in doc.activations
|
|
|
|
textcat.save_activations = True
|
|
doc = nlp("This is a test.")
|
|
assert list(doc.activations["textcat_multilabel"].keys()) == ["probabilities"]
|
|
assert doc.activations["textcat_multilabel"]["probabilities"].shape == (nO,)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"component_name,scorer",
|
|
[
|
|
("textcat", "spacy.textcat_scorer.v1"),
|
|
("textcat_multilabel", "spacy.textcat_multilabel_scorer.v1"),
|
|
],
|
|
)
|
|
def test_textcat_legacy_scorers(component_name, scorer):
|
|
"""Check that legacy scorers are registered and produce the expected score
|
|
keys."""
|
|
nlp = English()
|
|
nlp.add_pipe(component_name, config={"scorer": {"@scorers": scorer}})
|
|
|
|
train_examples = []
|
|
for text, annotations in TRAIN_DATA_SINGLE_LABEL:
|
|
train_examples.append(Example.from_dict(nlp.make_doc(text), annotations))
|
|
nlp.initialize(get_examples=lambda: train_examples)
|
|
|
|
# score the model (it's not actually trained but that doesn't matter)
|
|
scores = nlp.evaluate(train_examples)
|
|
assert 0 <= scores["cats_score"] <= 1
|