mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-28 18:24:08 +03:00
a183db3cef
* Try to fix doc.copy * Set dev version * Make vocab always own lexemes * Change version * Add SpanGroups.copy method * Fix set_annotations during Parser.update * Fix dict proxy copy * Upd version * Fix copying SpanGroups * Fix set_annotations in parser.update * Fix parser set_annotations during update * Revert "Fix parser set_annotations during update" This reverts commiteb138c89ed
. * Revert "Fix set_annotations in parser.update" This reverts commitc6df0eafd0
. * Fix set_annotations during parser update * Inc version * Handle final states in get_oracle_sequence * Inc version * Try to fix parser training * Inc version * Fix * Inc version * Fix parser oracle * Inc version * Inc version * Fix transition has_gold * Inc version * Try to use real histories, not oracle * Inc version * Upd parser * Inc version * WIP on rewrite parser * WIP refactor parser * New progress on parser model refactor * Prepare to remove parser_model.pyx * Convert parser from cdef class * Delete spacy.ml.parser_model * Delete _precomputable_affine module * Wire up tb_framework to new parser model * Wire up parser model * Uncython ner.pyx and dep_parser.pyx * Uncython * Work on parser model * Support unseen_classes in parser model * Support unseen classes in parser * Cleaner handling of unseen classes * Work through tests * Keep working through errors * Keep working through errors * Work on parser. 15 tests failing * Xfail beam stuff. 9 failures * More xfail. 7 failures * Xfail. 6 failures * cleanup * formatting * fixes * pass nO through * Fix empty doc in update * Hackishly fix resizing. 3 failures * Fix redundant test. 2 failures * Add reference version * black formatting * Get tests passing with reference implementation * Fix missing prints * Add missing file * Improve indexing on reference implementation * Get non-reference forward func working * Start rigging beam back up * removing redundant tests, cf #8106 * black formatting * temporarily xfailing issue 4314 * make flake8 happy again * mypy fixes * ensure labels are added upon predict * cleanup remnants from merge conflicts * Improve unseen label masking Two changes to speed up masking by ~10%: - Use a bool array rather than an array of float32. - Let the mask indicate whether a label was seen, rather than unseen. The mask is most frequently used to index scores for seen labels. However, since the mask marked unseen labels, this required computing an intermittent flipped mask. * Write moves costs directly into numpy array (#10163) This avoids elementwise indexing and the allocation of an additional array. Gives a ~15% speed improvement when using batch_by_sequence with size 32. * Temporarily disable ner and rehearse tests Until rehearse is implemented again in the refactored parser. * Fix loss serialization issue (#10600) * Fix loss serialization issue Serialization of a model fails with: TypeError: array(738.3855, dtype=float32) is not JSON serializable Fix this using float conversion. * Disable CI steps that require spacy.TransitionBasedParser.v2 After finishing the refactor, TransitionBasedParser.v2 should be provided for backwards compat. * Add back support for beam parsing to the refactored parser (#10633) * Add back support for beam parsing Beam parsing was already implemented as part of the `BeamBatch` class. This change makes its counterpart `GreedyBatch`. Both classes are hooked up in `TransitionModel`, selecting `GreedyBatch` when the beam size is one, or `BeamBatch` otherwise. * Use kwarg for beam width Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Avoid implicit default for beam_width and beam_density * Parser.{beam,greedy}_parse: ensure labels are added * Remove 'deprecated' comments Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Parser `StateC` optimizations (#10746) * `StateC`: Optimizations Avoid GIL acquisition in `__init__` Increase default buffer capacities on init Reduce C++ exception overhead * Fix typo * Replace `set::count` with `set::find` * Add exception attribute to c'tor * Remove unused import * Use a power-of-two value for initial capacity Use default-insert to init `_heads` and `_unshiftable` * Merge `cdef` variable declarations and assignments * Vectorize `example.get_aligned_parses` (#10789) * `example`: Vectorize `get_aligned_parse` Rename `numpy` import * Convert aligned array to lists before returning * Revert import renaming * Elide slice arguments when selecting the entire range * Tagger/morphologizer alignment performance optimizations (#10798) * `example`: Unwrap `numpy` scalar arrays before passing them to `StringStore.__getitem__` * `AlignmentArray`: Use native list as staging buffer for offset calculation * `example`: Vectorize `get_aligned` * Hoist inner functions out of `get_aligned` * Replace inline `if..else` clause in assignment statement * `AlignmentArray`: Use raw indexing into offset and data `numpy` arrays * `example`: Replace array unique value check with `groupby` * `example`: Correctly exclude tokens with no alignment in `_get_aligned_vectorized` Simplify `_get_aligned_non_vectorized` * `util`: Update `all_equal` docstring * Explicitly use `int32_t*` * Restore C CPU inference in the refactored parser (#10747) * Bring back the C parsing model The C parsing model is used for CPU inference and is still faster for CPU inference than the forward pass of the Thinc model. * Use C sgemm provided by the Ops implementation * Make tb_framework module Cython, merge in C forward implementation * TransitionModel: raise in backprop returned from forward_cpu * Re-enable greedy parse test * Return transition scores when forward_cpu is used * Apply suggestions from code review Import `Model` from `thinc.api` Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Use relative imports in tb_framework * Don't assume a default for beam_width * We don't have a direct dependency on BLIS anymore * Rename forwards to _forward_{fallback,greedy_cpu} * Require thinc >=8.1.0,<8.2.0 * tb_framework: clean up imports * Fix return type of _get_seen_mask * Move up _forward_greedy_cpu * Style fixes. * Lower thinc lowerbound to 8.1.0.dev0 * Formatting fix Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com> Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com> * Reimplement parser rehearsal function (#10878) * Reimplement parser rehearsal function Before the parser refactor, rehearsal was driven by a loop in the `rehearse` method itself. For each parsing step, the loops would: 1. Get the predictions of the teacher. 2. Get the predictions and backprop function of the student. 3. Compute the loss and backprop into the student. 4. Move the teacher and student forward with the predictions of the student. In the refactored parser, we cannot perform search stepwise rehearsal anymore, since the model now predicts all parsing steps at once. Therefore, rehearsal is performed in the following steps: 1. Get the predictions of all parsing steps from the student, along with its backprop function. 2. Get the predictions from the teacher, but use the predictions of the student to advance the parser while doing so. 3. Compute the loss and backprop into the student. To support the second step a new method, `advance_with_actions` is added to `GreedyBatch`, which performs the provided parsing steps. * tb_framework: wrap upper_W and upper_b in Linear Thinc's Optimizer cannot handle resizing of existing parameters. Until it does, we work around this by wrapping the weights/biases of the upper layer of the parser model in Linear. When the upper layer is resized, we copy over the existing parameters into a new Linear instance. This does not trigger an error in Optimizer, because it sees the resized layer as a new set of parameters. * Add test for TransitionSystem.apply_actions * Better FIXME marker Co-authored-by: Madeesh Kannan <shadeMe@users.noreply.github.com> * Fixes from Madeesh * Apply suggestions from Sofie Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Remove useless assignment Co-authored-by: Madeesh Kannan <shadeMe@users.noreply.github.com> Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Rename some identifiers in the parser refactor (#10935) * Rename _parseC to _parse_batch * tb_framework: prefix many auxiliary functions with underscore To clearly state the intent that they are private. * Rename `lower` to `hidden`, `upper` to `output` * Parser slow test fixup We don't have TransitionBasedParser.{v1,v2} until we bring it back as a legacy option. * Remove last vestiges of PrecomputableAffine This does not exist anymore as a separate layer. * ner: re-enable sentence boundary checks * Re-enable test that works now. * test_ner: make loss test more strict again * Remove commented line * Re-enable some more beam parser tests * Remove unused _forward_reference function * Update for CBlas changes in Thinc 8.1.0.dev2 Bump thinc dependency to 8.1.0.dev3. * Remove references to spacy.TransitionBasedParser.{v1,v2} Since they will not be offered starting with spaCy v4. * `tb_framework`: Replace references to `thinc.backends.linalg` with `CBlas` * dont use get_array_module (#11056) (#11293) Co-authored-by: kadarakos <kadar.akos@gmail.com> * Move `thinc.extra.search` to `spacy.pipeline._parser_internals` (#11317) * `search`: Move from `thinc.extra.search` Fix NPE in `Beam.__dealloc__` * `pytest`: Add support for executing Cython tests Move `search` tests from thinc and patch them to run with `pytest` * `mypy` fix * Update comment * `conftest`: Expose `register_cython_tests` * Remove unused import * Move `argmax` impls to new `_parser_utils` Cython module (#11410) * Parser does not have to be a cdef class anymore This also fixes validation of the initialization schema. * Add back spacy.TransitionBasedParser.v2 * Fix a rename that was missed in #10878. So that rehearsal tests pass. * Remove module from setup.py that got added during the merge * Bring back support for `update_with_oracle_cut_size` (#12086) * Bring back support for `update_with_oracle_cut_size` This option was available in the pre-refactor parser, but was never implemented in the refactored parser. This option cuts transition sequences that are longer than `update_with_oracle_cut` size into separate sequences that have at most `update_with_oracle_cut` transitions. The oracle (gold standard) transition sequence is used to determine the cuts and the initial states for the additional sequences. Applying this cut makes the batches more homogeneous in the transition sequence lengths, making forward passes (and as a consequence training) much faster. Training time 1000 steps on de_core_news_lg: - Before this change: 149s - After this change: 68s - Pre-refactor parser: 81s * Fix a rename that was missed in #10878. So that rehearsal tests pass. * Apply suggestions from @shadeMe * Use chained conditional * Test with update_with_oracle_cut_size={0, 1, 5, 100} And fix a git that occurs with a cut size of 1. * Fix up some merge fall out * Update parser distillation for the refactor In the old parser, we'd iterate over the transitions in the distill function and compute the loss/gradients on the go. In the refactored parser, we first let the student model parse the inputs. Then we'll let the teacher compute the transition probabilities of the states in the student's transition sequence. We can then compute the gradients of the student given the teacher. * Add back spacy.TransitionBasedParser.v1 references - Accordion in the architecture docs. - Test in test_parse, but disabled until we have a spacy-legacy release. Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com> Co-authored-by: svlandeg <svlandeg@github.com> Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> Co-authored-by: Madeesh Kannan <shadeMe@users.noreply.github.com> Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com> Co-authored-by: kadarakos <kadar.akos@gmail.com>
622 lines
23 KiB
Cython
622 lines
23 KiB
Cython
# cython: infer_types=True, cdivision=True, boundscheck=False
|
|
from typing import List, Tuple, Any, Optional, TypeVar, cast
|
|
from libc.string cimport memset, memcpy
|
|
from libc.stdlib cimport calloc, free, realloc
|
|
from libcpp.vector cimport vector
|
|
import numpy
|
|
cimport numpy as np
|
|
from thinc.api import Model, normal_init, chain, list2array, Linear
|
|
from thinc.api import uniform_init, glorot_uniform_init, zero_init
|
|
from thinc.api import NumpyOps
|
|
from thinc.backends.cblas cimport CBlas, saxpy, sgemm
|
|
from thinc.types import Floats1d, Floats2d, Floats3d, Floats4d
|
|
from thinc.types import Ints1d, Ints2d
|
|
|
|
from ..errors import Errors
|
|
from ..pipeline._parser_internals import _beam_utils
|
|
from ..pipeline._parser_internals.batch import GreedyBatch
|
|
from ..pipeline._parser_internals._parser_utils cimport arg_max
|
|
from ..pipeline._parser_internals.transition_system cimport c_transition_batch, c_apply_actions
|
|
from ..pipeline._parser_internals.transition_system cimport TransitionSystem
|
|
from ..pipeline._parser_internals.stateclass cimport StateC, StateClass
|
|
from ..tokens.doc import Doc
|
|
from ..util import registry
|
|
|
|
|
|
State = Any # TODO
|
|
|
|
|
|
@registry.layers("spacy.TransitionModel.v2")
|
|
def TransitionModel(
|
|
*,
|
|
tok2vec: Model[List[Doc], List[Floats2d]],
|
|
beam_width: int = 1,
|
|
beam_density: float = 0.0,
|
|
state_tokens: int,
|
|
hidden_width: int,
|
|
maxout_pieces: int,
|
|
nO: Optional[int] = None,
|
|
unseen_classes=set(),
|
|
) -> Model[Tuple[List[Doc], TransitionSystem], List[Tuple[State, List[Floats2d]]]]:
|
|
"""Set up a transition-based parsing model, using a maxout hidden
|
|
layer and a linear output layer.
|
|
"""
|
|
t2v_width = tok2vec.get_dim("nO") if tok2vec.has_dim("nO") else None
|
|
tok2vec_projected = chain(tok2vec, list2array(), Linear(hidden_width, t2v_width)) # type: ignore
|
|
tok2vec_projected.set_dim("nO", hidden_width)
|
|
|
|
# FIXME: we use `output` as a container for the output layer's
|
|
# weights and biases. Thinc optimizers cannot handle resizing
|
|
# of parameters. So, when the parser model is resized, we
|
|
# construct a new `output` layer, which has a different key in
|
|
# the optimizer. Once the optimizer supports parameter resizing,
|
|
# we can replace the `output` layer by `output_W` and `output_b`
|
|
# parameters in this model.
|
|
output = Linear(nO=None, nI=hidden_width, init_W=zero_init)
|
|
|
|
return Model(
|
|
name="parser_model",
|
|
forward=forward,
|
|
init=init,
|
|
layers=[tok2vec_projected, output],
|
|
refs={
|
|
"tok2vec": tok2vec_projected,
|
|
"output": output,
|
|
},
|
|
params={
|
|
"hidden_W": None, # Floats2d W for the hidden layer
|
|
"hidden_b": None, # Floats1d bias for the hidden layer
|
|
"hidden_pad": None, # Floats1d padding for the hidden layer
|
|
},
|
|
dims={
|
|
"nO": None, # Output size
|
|
"nP": maxout_pieces,
|
|
"nH": hidden_width,
|
|
"nI": tok2vec_projected.maybe_get_dim("nO"),
|
|
"nF": state_tokens,
|
|
},
|
|
attrs={
|
|
"beam_width": beam_width,
|
|
"beam_density": beam_density,
|
|
"unseen_classes": set(unseen_classes),
|
|
"resize_output": resize_output,
|
|
},
|
|
)
|
|
|
|
|
|
def resize_output(model: Model, new_nO: int) -> Model:
|
|
old_nO = model.maybe_get_dim("nO")
|
|
output = model.get_ref("output")
|
|
if old_nO is None:
|
|
model.set_dim("nO", new_nO)
|
|
output.set_dim("nO", new_nO)
|
|
output.initialize()
|
|
return model
|
|
elif new_nO <= old_nO:
|
|
return model
|
|
elif output.has_param("W"):
|
|
nH = model.get_dim("nH")
|
|
new_output = Linear(nO=new_nO, nI=nH, init_W=zero_init)
|
|
new_output.initialize()
|
|
new_W = new_output.get_param("W")
|
|
new_b = new_output.get_param("b")
|
|
old_W = output.get_param("W")
|
|
old_b = output.get_param("b")
|
|
new_W[:old_nO] = old_W # type: ignore
|
|
new_b[:old_nO] = old_b # type: ignore
|
|
for i in range(old_nO, new_nO):
|
|
model.attrs["unseen_classes"].add(i)
|
|
model.layers[-1] = new_output
|
|
model.set_ref("output", new_output)
|
|
# TODO: Avoid this private intrusion
|
|
model._dims["nO"] = new_nO
|
|
return model
|
|
|
|
|
|
def init(
|
|
model,
|
|
X: Optional[Tuple[List[Doc], TransitionSystem]] = None,
|
|
Y: Optional[Tuple[List[State], List[Floats2d]]] = None,
|
|
):
|
|
if X is not None:
|
|
docs, moves = X
|
|
model.get_ref("tok2vec").initialize(X=docs)
|
|
else:
|
|
model.get_ref("tok2vec").initialize()
|
|
inferred_nO = _infer_nO(Y)
|
|
if inferred_nO is not None:
|
|
current_nO = model.maybe_get_dim("nO")
|
|
if current_nO is None or current_nO != inferred_nO:
|
|
model.attrs["resize_output"](model, inferred_nO)
|
|
nO = model.get_dim("nO")
|
|
nP = model.get_dim("nP")
|
|
nH = model.get_dim("nH")
|
|
nI = model.get_dim("nI")
|
|
nF = model.get_dim("nF")
|
|
ops = model.ops
|
|
|
|
Wl = ops.alloc2f(nH * nP, nF * nI)
|
|
bl = ops.alloc1f(nH * nP)
|
|
padl = ops.alloc1f(nI)
|
|
# Wl = zero_init(ops, Wl.shape)
|
|
Wl = glorot_uniform_init(ops, Wl.shape)
|
|
padl = uniform_init(ops, padl.shape) # type: ignore
|
|
# TODO: Experiment with whether better to initialize output_W
|
|
model.set_param("hidden_W", Wl)
|
|
model.set_param("hidden_b", bl)
|
|
model.set_param("hidden_pad", padl)
|
|
# model = _lsuv_init(model)
|
|
return model
|
|
|
|
|
|
class TransitionModelInputs:
|
|
"""
|
|
Input to transition model.
|
|
"""
|
|
|
|
# dataclass annotation is not yet supported in Cython 0.29.x,
|
|
# so, we'll do something close to it.
|
|
|
|
actions: Optional[List[Ints1d]]
|
|
docs: List[Doc]
|
|
max_moves: int
|
|
moves: TransitionSystem
|
|
states: Optional[List[State]]
|
|
|
|
__slots__ = [
|
|
"actions",
|
|
"docs",
|
|
"max_moves",
|
|
"moves",
|
|
"states",
|
|
]
|
|
|
|
def __init__(
|
|
self,
|
|
docs: List[Doc],
|
|
moves: TransitionSystem,
|
|
actions: Optional[List[Ints1d]]=None,
|
|
max_moves: int=0,
|
|
states: Optional[List[State]]=None):
|
|
"""
|
|
actions (Optional[List[Ints1d]]): actions to apply for each Doc.
|
|
docs (List[Doc]): Docs to predict transition sequences for.
|
|
max_moves: (int): the maximum number of moves to apply, values less
|
|
than 1 will apply moves to states until they are final states.
|
|
moves (TransitionSystem): the transition system to use when predicting
|
|
the transition sequences.
|
|
states (Optional[List[States]]): the initial states to predict the
|
|
transition sequences for. When absent, the initial states are
|
|
initialized from the provided Docs.
|
|
"""
|
|
self.actions = actions
|
|
self.docs = docs
|
|
self.moves = moves
|
|
self.max_moves = max_moves
|
|
self.states = states
|
|
|
|
|
|
def forward(model, inputs: TransitionModelInputs, is_train: bool):
|
|
docs = inputs.docs
|
|
moves = inputs.moves
|
|
actions = inputs.actions
|
|
|
|
beam_width = model.attrs["beam_width"]
|
|
hidden_pad = model.get_param("hidden_pad")
|
|
tok2vec = model.get_ref("tok2vec")
|
|
|
|
states = moves.init_batch(docs) if inputs.states is None else inputs.states
|
|
tokvecs, backprop_tok2vec = tok2vec(docs, is_train)
|
|
tokvecs = model.ops.xp.vstack((tokvecs, hidden_pad))
|
|
feats, backprop_feats = _forward_precomputable_affine(model, tokvecs, is_train)
|
|
seen_mask = _get_seen_mask(model)
|
|
|
|
if not is_train and beam_width == 1 and isinstance(model.ops, NumpyOps):
|
|
# Note: max_moves is only used during training, so we don't need to
|
|
# pass it to the greedy inference path.
|
|
return _forward_greedy_cpu(model, moves, states, feats, seen_mask, actions=actions)
|
|
else:
|
|
return _forward_fallback(model, moves, states, tokvecs, backprop_tok2vec,
|
|
feats, backprop_feats, seen_mask, is_train, actions=actions,
|
|
max_moves=inputs.max_moves)
|
|
|
|
|
|
def _forward_greedy_cpu(model: Model, TransitionSystem moves, states: List[StateClass], np.ndarray feats,
|
|
np.ndarray[np.npy_bool, ndim=1] seen_mask, actions: Optional[List[Ints1d]]=None):
|
|
cdef vector[StateC*] c_states
|
|
cdef StateClass state
|
|
for state in states:
|
|
if not state.is_final():
|
|
c_states.push_back(state.c)
|
|
weights = _get_c_weights(model, <float*>feats.data, seen_mask)
|
|
# Precomputed features have rows for each token, plus one for padding.
|
|
cdef int n_tokens = feats.shape[0] - 1
|
|
sizes = _get_c_sizes(model, c_states.size(), n_tokens)
|
|
cdef CBlas cblas = model.ops.cblas()
|
|
scores = _parse_batch(cblas, moves, &c_states[0], weights, sizes, actions=actions)
|
|
|
|
def backprop(dY):
|
|
raise ValueError(Errors.E4004)
|
|
|
|
return (states, scores), backprop
|
|
|
|
cdef list _parse_batch(CBlas cblas, TransitionSystem moves, StateC** states,
|
|
WeightsC weights, SizesC sizes, actions: Optional[List[Ints1d]]=None):
|
|
cdef int i, j
|
|
cdef vector[StateC *] unfinished
|
|
cdef ActivationsC activations = _alloc_activations(sizes)
|
|
cdef np.ndarray step_scores
|
|
cdef np.ndarray step_actions
|
|
|
|
scores = []
|
|
while sizes.states >= 1:
|
|
step_scores = numpy.empty((sizes.states, sizes.classes), dtype="f")
|
|
step_actions = actions[0] if actions is not None else None
|
|
with nogil:
|
|
_predict_states(cblas, &activations, <float*>step_scores.data, states, &weights, sizes)
|
|
if actions is None:
|
|
# Validate actions, argmax, take action.
|
|
c_transition_batch(moves, states, <const float*>step_scores.data, sizes.classes,
|
|
sizes.states)
|
|
else:
|
|
c_apply_actions(moves, states, <const int*>step_actions.data, sizes.states)
|
|
for i in range(sizes.states):
|
|
if not states[i].is_final():
|
|
unfinished.push_back(states[i])
|
|
for i in range(unfinished.size()):
|
|
states[i] = unfinished[i]
|
|
sizes.states = unfinished.size()
|
|
scores.append(step_scores)
|
|
unfinished.clear()
|
|
actions = actions[1:] if actions is not None else None
|
|
_free_activations(&activations)
|
|
|
|
return scores
|
|
|
|
|
|
def _forward_fallback(
|
|
model: Model,
|
|
moves: TransitionSystem,
|
|
states: List[StateClass],
|
|
tokvecs, backprop_tok2vec,
|
|
feats,
|
|
backprop_feats,
|
|
seen_mask,
|
|
is_train: bool,
|
|
actions: Optional[List[Ints1d]]=None,
|
|
max_moves: int=0):
|
|
nF = model.get_dim("nF")
|
|
output = model.get_ref("output")
|
|
hidden_b = model.get_param("hidden_b")
|
|
nH = model.get_dim("nH")
|
|
nP = model.get_dim("nP")
|
|
|
|
beam_width = model.attrs["beam_width"]
|
|
beam_density = model.attrs["beam_density"]
|
|
|
|
ops = model.ops
|
|
|
|
all_ids = []
|
|
all_which = []
|
|
all_statevecs = []
|
|
all_scores = []
|
|
if beam_width == 1:
|
|
batch = GreedyBatch(moves, states, None)
|
|
else:
|
|
batch = _beam_utils.BeamBatch(
|
|
moves, states, None, width=beam_width, density=beam_density
|
|
)
|
|
arange = ops.xp.arange(nF)
|
|
n_moves = 0
|
|
while not batch.is_done:
|
|
ids = numpy.zeros((len(batch.get_unfinished_states()), nF), dtype="i")
|
|
for i, state in enumerate(batch.get_unfinished_states()):
|
|
state.set_context_tokens(ids, i, nF)
|
|
# Sum the state features, add the bias and apply the activation (maxout)
|
|
# to create the state vectors.
|
|
preacts2f = feats[ids, arange].sum(axis=1) # type: ignore
|
|
preacts2f += hidden_b
|
|
preacts = ops.reshape3f(preacts2f, preacts2f.shape[0], nH, nP)
|
|
assert preacts.shape[0] == len(batch.get_unfinished_states()), preacts.shape
|
|
statevecs, which = ops.maxout(preacts)
|
|
# We don't use output's backprop, since we want to backprop for
|
|
# all states at once, rather than a single state.
|
|
scores = output.predict(statevecs)
|
|
scores[:, seen_mask] = ops.xp.nanmin(scores)
|
|
# Transition the states, filtering out any that are finished.
|
|
cpu_scores = ops.to_numpy(scores)
|
|
if actions is None:
|
|
batch.advance(cpu_scores)
|
|
else:
|
|
batch.advance_with_actions(actions[0])
|
|
actions = actions[1:]
|
|
all_scores.append(scores)
|
|
if is_train:
|
|
# Remember intermediate results for the backprop.
|
|
all_ids.append(ids)
|
|
all_statevecs.append(statevecs)
|
|
all_which.append(which)
|
|
if n_moves >= max_moves >= 1:
|
|
break
|
|
n_moves += 1
|
|
|
|
def backprop_parser(d_states_d_scores):
|
|
ids = ops.xp.vstack(all_ids)
|
|
which = ops.xp.vstack(all_which)
|
|
statevecs = ops.xp.vstack(all_statevecs)
|
|
_, d_scores = d_states_d_scores
|
|
if model.attrs.get("unseen_classes"):
|
|
# If we have a negative gradient (i.e. the probability should
|
|
# increase) on any classes we filtered out as unseen, mark
|
|
# them as seen.
|
|
for clas in set(model.attrs["unseen_classes"]):
|
|
if (d_scores[:, clas] < 0).any():
|
|
model.attrs["unseen_classes"].remove(clas)
|
|
d_scores *= seen_mask == False
|
|
# Calculate the gradients for the parameters of the output layer.
|
|
# The weight gemm is (nS, nO) @ (nS, nH).T
|
|
output.inc_grad("b", d_scores.sum(axis=0))
|
|
output.inc_grad("W", ops.gemm(d_scores, statevecs, trans1=True))
|
|
# Now calculate d_statevecs, by backproping through the output linear layer.
|
|
# This gemm is (nS, nO) @ (nO, nH)
|
|
output_W = output.get_param("W")
|
|
d_statevecs = ops.gemm(d_scores, output_W)
|
|
# Backprop through the maxout activation
|
|
d_preacts = ops.backprop_maxout(d_statevecs, which, nP)
|
|
d_preacts2f = ops.reshape2f(d_preacts, d_preacts.shape[0], nH * nP)
|
|
model.inc_grad("hidden_b", d_preacts2f.sum(axis=0))
|
|
# We don't need to backprop the summation, because we pass back the IDs instead
|
|
d_state_features = backprop_feats((d_preacts2f, ids))
|
|
d_tokvecs = ops.alloc2f(tokvecs.shape[0], tokvecs.shape[1])
|
|
ops.scatter_add(d_tokvecs, ids, d_state_features)
|
|
model.inc_grad("hidden_pad", d_tokvecs[-1])
|
|
return (backprop_tok2vec(d_tokvecs[:-1]), None)
|
|
|
|
return (list(batch), all_scores), backprop_parser
|
|
|
|
|
|
def _get_seen_mask(model: Model) -> numpy.array[bool, 1]:
|
|
mask = model.ops.xp.zeros(model.get_dim("nO"), dtype="bool")
|
|
for class_ in model.attrs.get("unseen_classes", set()):
|
|
mask[class_] = True
|
|
return mask
|
|
|
|
|
|
def _forward_precomputable_affine(model, X: Floats2d, is_train: bool):
|
|
W: Floats2d = model.get_param("hidden_W")
|
|
nF = model.get_dim("nF")
|
|
nH = model.get_dim("nH")
|
|
nP = model.get_dim("nP")
|
|
nI = model.get_dim("nI")
|
|
# The weights start out (nH * nP, nF * nI). Transpose and reshape to (nF * nH *nP, nI)
|
|
W3f = model.ops.reshape3f(W, nH * nP, nF, nI)
|
|
W3f = W3f.transpose((1, 0, 2))
|
|
W2f = model.ops.reshape2f(W3f, nF * nH * nP, nI)
|
|
assert X.shape == (X.shape[0], nI), X.shape
|
|
Yf_ = model.ops.gemm(X, W2f, trans2=True)
|
|
Yf = model.ops.reshape3f(Yf_, Yf_.shape[0], nF, nH * nP)
|
|
|
|
def backward(dY_ids: Tuple[Floats3d, Ints2d]):
|
|
# This backprop is particularly tricky, because we get back a different
|
|
# thing from what we put out. We put out an array of shape:
|
|
# (nB, nF, nH, nP), and get back:
|
|
# (nB, nH, nP) and ids (nB, nF)
|
|
# The ids tell us the values of nF, so we would have:
|
|
#
|
|
# dYf = zeros((nB, nF, nH, nP))
|
|
# for b in range(nB):
|
|
# for f in range(nF):
|
|
# dYf[b, ids[b, f]] += dY[b]
|
|
#
|
|
# However, we avoid building that array for efficiency -- and just pass
|
|
# in the indices.
|
|
dY, ids = dY_ids
|
|
dXf = model.ops.gemm(dY, W)
|
|
Xf = X[ids].reshape((ids.shape[0], -1))
|
|
dW = model.ops.gemm(dY, Xf, trans1=True)
|
|
model.inc_grad("hidden_W", dW)
|
|
return model.ops.reshape3f(dXf, dXf.shape[0], nF, nI)
|
|
|
|
return Yf, backward
|
|
|
|
|
|
def _infer_nO(Y: Optional[Tuple[List[State], List[Floats2d]]]) -> Optional[int]:
|
|
if Y is None:
|
|
return None
|
|
_, scores = Y
|
|
if len(scores) == 0:
|
|
return None
|
|
assert scores[0].shape[0] >= 1
|
|
assert len(scores[0].shape) == 2
|
|
return scores[0].shape[1]
|
|
|
|
|
|
def _lsuv_init(model: Model):
|
|
"""This is like the 'layer sequential unit variance', but instead
|
|
of taking the actual inputs, we randomly generate whitened data.
|
|
|
|
Why's this all so complicated? We have a huge number of inputs,
|
|
and the maxout unit makes guessing the dynamics tricky. Instead
|
|
we set the maxout weights to values that empirically result in
|
|
whitened outputs given whitened inputs.
|
|
"""
|
|
W = model.maybe_get_param("hidden_W")
|
|
if W is not None and W.any():
|
|
return
|
|
|
|
nF = model.get_dim("nF")
|
|
nH = model.get_dim("nH")
|
|
nP = model.get_dim("nP")
|
|
nI = model.get_dim("nI")
|
|
W = model.ops.alloc4f(nF, nH, nP, nI)
|
|
b = model.ops.alloc2f(nH, nP)
|
|
pad = model.ops.alloc4f(1, nF, nH, nP)
|
|
|
|
ops = model.ops
|
|
W = normal_init(ops, W.shape, mean=float(ops.xp.sqrt(1.0 / nF * nI)))
|
|
pad = normal_init(ops, pad.shape, mean=1.0)
|
|
model.set_param("W", W)
|
|
model.set_param("b", b)
|
|
model.set_param("pad", pad)
|
|
|
|
ids = ops.alloc_f((5000, nF), dtype="f")
|
|
ids += ops.xp.random.uniform(0, 1000, ids.shape)
|
|
ids = ops.asarray(ids, dtype="i")
|
|
tokvecs = ops.alloc_f((5000, nI), dtype="f")
|
|
tokvecs += ops.xp.random.normal(loc=0.0, scale=1.0, size=tokvecs.size).reshape(
|
|
tokvecs.shape
|
|
)
|
|
|
|
def predict(ids, tokvecs):
|
|
# nS ids. nW tokvecs. Exclude the padding array.
|
|
hiddens, _ = _forward_precomputable_affine(model, tokvecs[:-1], False)
|
|
vectors = model.ops.alloc2f(ids.shape[0], nH * nP)
|
|
# need nS vectors
|
|
hiddens = hiddens.reshape((hiddens.shape[0] * nF, nH * nP))
|
|
model.ops.scatter_add(vectors, ids.flatten(), hiddens)
|
|
vectors3f = model.ops.reshape3f(vectors, vectors.shape[0], nH, nP)
|
|
vectors3f += b
|
|
return model.ops.maxout(vectors3f)[0]
|
|
|
|
tol_var = 0.01
|
|
tol_mean = 0.01
|
|
t_max = 10
|
|
W = cast(Floats4d, model.get_param("hidden_W").copy())
|
|
b = cast(Floats2d, model.get_param("hidden_b").copy())
|
|
for t_i in range(t_max):
|
|
acts1 = predict(ids, tokvecs)
|
|
var = model.ops.xp.var(acts1)
|
|
mean = model.ops.xp.mean(acts1)
|
|
if abs(var - 1.0) >= tol_var:
|
|
W /= model.ops.xp.sqrt(var)
|
|
model.set_param("hidden_W", W)
|
|
elif abs(mean) >= tol_mean:
|
|
b -= mean
|
|
model.set_param("hidden_b", b)
|
|
else:
|
|
break
|
|
return model
|
|
|
|
|
|
cdef WeightsC _get_c_weights(model, const float* feats, np.ndarray[np.npy_bool, ndim=1] seen_mask) except *:
|
|
output = model.get_ref("output")
|
|
cdef np.ndarray hidden_b = model.get_param("hidden_b")
|
|
cdef np.ndarray output_W = output.get_param("W")
|
|
cdef np.ndarray output_b = output.get_param("b")
|
|
|
|
cdef WeightsC weights
|
|
weights.feat_weights = feats
|
|
weights.feat_bias = <const float*>hidden_b.data
|
|
weights.hidden_weights = <const float *> output_W.data
|
|
weights.hidden_bias = <const float *> output_b.data
|
|
weights.seen_mask = <const int8_t*> seen_mask.data
|
|
|
|
return weights
|
|
|
|
|
|
cdef SizesC _get_c_sizes(model, int batch_size, int tokens) except *:
|
|
cdef SizesC sizes
|
|
sizes.states = batch_size
|
|
sizes.classes = model.get_dim("nO")
|
|
sizes.hiddens = model.get_dim("nH")
|
|
sizes.pieces = model.get_dim("nP")
|
|
sizes.feats = model.get_dim("nF")
|
|
sizes.embed_width = model.get_dim("nI")
|
|
sizes.tokens = tokens
|
|
return sizes
|
|
|
|
|
|
cdef ActivationsC _alloc_activations(SizesC n) nogil:
|
|
cdef ActivationsC A
|
|
memset(&A, 0, sizeof(A))
|
|
_resize_activations(&A, n)
|
|
return A
|
|
|
|
|
|
cdef void _free_activations(const ActivationsC* A) nogil:
|
|
free(A.token_ids)
|
|
free(A.unmaxed)
|
|
free(A.hiddens)
|
|
free(A.is_valid)
|
|
|
|
|
|
cdef void _resize_activations(ActivationsC* A, SizesC n) nogil:
|
|
if n.states <= A._max_size:
|
|
A._curr_size = n.states
|
|
return
|
|
if A._max_size == 0:
|
|
A.token_ids = <int*>calloc(n.states * n.feats, sizeof(A.token_ids[0]))
|
|
A.unmaxed = <float*>calloc(n.states * n.hiddens * n.pieces, sizeof(A.unmaxed[0]))
|
|
A.hiddens = <float*>calloc(n.states * n.hiddens, sizeof(A.hiddens[0]))
|
|
A.is_valid = <int*>calloc(n.states * n.classes, sizeof(A.is_valid[0]))
|
|
A._max_size = n.states
|
|
else:
|
|
A.token_ids = <int*>realloc(A.token_ids,
|
|
n.states * n.feats * sizeof(A.token_ids[0]))
|
|
A.unmaxed = <float*>realloc(A.unmaxed,
|
|
n.states * n.hiddens * n.pieces * sizeof(A.unmaxed[0]))
|
|
A.hiddens = <float*>realloc(A.hiddens,
|
|
n.states * n.hiddens * sizeof(A.hiddens[0]))
|
|
A.is_valid = <int*>realloc(A.is_valid,
|
|
n.states * n.classes * sizeof(A.is_valid[0]))
|
|
A._max_size = n.states
|
|
A._curr_size = n.states
|
|
|
|
|
|
cdef void _predict_states(CBlas cblas, ActivationsC* A, float* scores, StateC** states, const WeightsC* W, SizesC n) nogil:
|
|
_resize_activations(A, n)
|
|
for i in range(n.states):
|
|
states[i].set_context_tokens(&A.token_ids[i*n.feats], n.feats)
|
|
memset(A.unmaxed, 0, n.states * n.hiddens * n.pieces * sizeof(float))
|
|
_sum_state_features(cblas, A.unmaxed, W.feat_weights, A.token_ids, n)
|
|
for i in range(n.states):
|
|
saxpy(cblas)(n.hiddens * n.pieces, 1., W.feat_bias, 1, &A.unmaxed[i*n.hiddens*n.pieces], 1)
|
|
for j in range(n.hiddens):
|
|
index = i * n.hiddens * n.pieces + j * n.pieces
|
|
which = arg_max(&A.unmaxed[index], n.pieces)
|
|
A.hiddens[i*n.hiddens + j] = A.unmaxed[index + which]
|
|
if W.hidden_weights == NULL:
|
|
memcpy(scores, A.hiddens, n.states * n.classes * sizeof(float))
|
|
else:
|
|
# Compute hidden-to-output
|
|
sgemm(cblas)(False, True, n.states, n.classes, n.hiddens,
|
|
1.0, <const float *>A.hiddens, n.hiddens,
|
|
<const float *>W.hidden_weights, n.hiddens,
|
|
0.0, scores, n.classes)
|
|
# Add bias
|
|
for i in range(n.states):
|
|
saxpy(cblas)(n.classes, 1., W.hidden_bias, 1, &scores[i*n.classes], 1)
|
|
# Set unseen classes to minimum value
|
|
i = 0
|
|
min_ = scores[0]
|
|
for i in range(1, n.states * n.classes):
|
|
if scores[i] < min_:
|
|
min_ = scores[i]
|
|
for i in range(n.states):
|
|
for j in range(n.classes):
|
|
if W.seen_mask[j]:
|
|
scores[i*n.classes+j] = min_
|
|
|
|
|
|
cdef void _sum_state_features(CBlas cblas, float* output,
|
|
const float* cached, const int* token_ids, SizesC n) nogil:
|
|
cdef int idx, b, f, i
|
|
cdef const float* feature
|
|
cdef int B = n.states
|
|
cdef int O = n.hiddens * n.pieces
|
|
cdef int F = n.feats
|
|
cdef int T = n.tokens
|
|
padding = cached + (T * F * O)
|
|
cdef int id_stride = F*O
|
|
cdef float one = 1.
|
|
for b in range(B):
|
|
for f in range(F):
|
|
if token_ids[f] < 0:
|
|
feature = &padding[f*O]
|
|
else:
|
|
idx = token_ids[f] * id_stride + f*O
|
|
feature = &cached[idx]
|
|
saxpy(cblas)(O, one, <const float*>feature, 1, &output[b*O], 1)
|
|
token_ids += F
|
|
|