mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-12 02:06:31 +03:00
950832f087
* Tidy up pipes * Fix init, defaults and raise custom errors * Update docs * Update docs [ci skip] * Apply suggestions from code review Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com> * Tidy up error handling and validation, fix consistency * Simplify get_examples check * Remove unused import [ci skip] Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com>
60 lines
1.9 KiB
Python
60 lines
1.9 KiB
Python
from spacy.pipeline import EntityRecognizer
|
|
from spacy.tokens import Span
|
|
from spacy import registry
|
|
import pytest
|
|
|
|
from ..util import get_doc
|
|
from spacy.pipeline.ner import DEFAULT_NER_MODEL
|
|
|
|
|
|
def test_doc_add_entities_set_ents_iob(en_vocab):
|
|
text = ["This", "is", "a", "lion"]
|
|
doc = get_doc(en_vocab, text)
|
|
config = {
|
|
"learn_tokens": False,
|
|
"min_action_freq": 30,
|
|
"update_with_oracle_cut_size": 100,
|
|
}
|
|
cfg = {"model": DEFAULT_NER_MODEL}
|
|
model = registry.make_from_config(cfg, validate=True)["model"]
|
|
ner = EntityRecognizer(en_vocab, model, **config)
|
|
ner.begin_training(lambda: [])
|
|
ner(doc)
|
|
assert len(list(doc.ents)) == 0
|
|
assert [w.ent_iob_ for w in doc] == (["O"] * len(doc))
|
|
|
|
doc.ents = [(doc.vocab.strings["ANIMAL"], 3, 4)]
|
|
assert [w.ent_iob_ for w in doc] == ["O", "O", "O", "B"]
|
|
|
|
doc.ents = [(doc.vocab.strings["WORD"], 0, 2)]
|
|
assert [w.ent_iob_ for w in doc] == ["B", "I", "O", "O"]
|
|
|
|
|
|
def test_ents_reset(en_vocab):
|
|
text = ["This", "is", "a", "lion"]
|
|
doc = get_doc(en_vocab, text)
|
|
config = {
|
|
"learn_tokens": False,
|
|
"min_action_freq": 30,
|
|
"update_with_oracle_cut_size": 100,
|
|
}
|
|
cfg = {"model": DEFAULT_NER_MODEL}
|
|
model = registry.make_from_config(cfg, validate=True)["model"]
|
|
ner = EntityRecognizer(en_vocab, model, **config)
|
|
ner.begin_training(lambda: [])
|
|
ner(doc)
|
|
assert [t.ent_iob_ for t in doc] == (["O"] * len(doc))
|
|
doc.ents = list(doc.ents)
|
|
assert [t.ent_iob_ for t in doc] == (["O"] * len(doc))
|
|
|
|
|
|
def test_add_overlapping_entities(en_vocab):
|
|
text = ["Louisiana", "Office", "of", "Conservation"]
|
|
doc = get_doc(en_vocab, text)
|
|
entity = Span(doc, 0, 4, label=391)
|
|
doc.ents = [entity]
|
|
|
|
new_entity = Span(doc, 0, 1, label=392)
|
|
with pytest.raises(ValueError):
|
|
doc.ents = list(doc.ents) + [new_entity]
|