mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-10-31 16:07:41 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			79 lines
		
	
	
		
			2.3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			79 lines
		
	
	
		
			2.3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| from __future__ import unicode_literals
 | |
| import os
 | |
| import random
 | |
| import contextlib
 | |
| import shutil
 | |
| import pytest
 | |
| import tempfile
 | |
| from pathlib import Path
 | |
| 
 | |
| 
 | |
| import pathlib
 | |
| from ...gold import GoldParse
 | |
| from ...pipeline import EntityRecognizer
 | |
| from ...language import Language
 | |
| 
 | |
| try:
 | |
|     unicode
 | |
| except NameError:
 | |
|     unicode = str
 | |
| 
 | |
| 
 | |
| @pytest.fixture
 | |
| def train_data():
 | |
|     return [
 | |
|             ["hey",[]],
 | |
|             ["howdy",[]],
 | |
|             ["hey there",[]],
 | |
|             ["hello",[]],
 | |
|             ["hi",[]],
 | |
|             ["i'm looking for a place to eat",[]],
 | |
|             ["i'm looking for a place in the north of town",[[31,36,"location"]]],
 | |
|             ["show me chinese restaurants",[[8,15,"cuisine"]]],
 | |
|             ["show me chines restaurants",[[8,14,"cuisine"]]],
 | |
|     ]
 | |
| 
 | |
| 
 | |
| @contextlib.contextmanager
 | |
| def temp_save_model(model):
 | |
|     model_dir = Path(tempfile.mkdtemp())
 | |
|     model.save_to_directory(model_dir)
 | |
|     yield model_dir
 | |
|     shutil.rmtree(model_dir.as_posix())
 | |
| 
 | |
| 
 | |
| def test_issue999(train_data):
 | |
|     '''Test that adding entities and resuming training works passably OK.
 | |
|     There are two issues here:
 | |
| 
 | |
|     1) We have to readd labels. This isn't very nice.
 | |
|     2) There's no way to set the learning rate for the weight update, so we
 | |
|         end up out-of-scale, causing it to learn too fast.
 | |
|     '''
 | |
|     nlp = Language(path=None, entity=False, tagger=False, parser=False)
 | |
|     nlp.entity = EntityRecognizer(nlp.vocab, features=Language.Defaults.entity_features)
 | |
|     for _, offsets in train_data:
 | |
|         for start, end, ent_type in offsets:
 | |
|             nlp.entity.add_label(ent_type)
 | |
|     nlp.entity.model.learn_rate = 0.001
 | |
|     for itn in range(100):
 | |
|         random.shuffle(train_data)
 | |
|         for raw_text, entity_offsets in train_data:
 | |
|             doc = nlp.make_doc(raw_text)
 | |
|             gold = GoldParse(doc, entities=entity_offsets)
 | |
|             loss = nlp.entity.update(doc, gold)
 | |
| 
 | |
|     with temp_save_model(nlp) as model_dir:
 | |
|         nlp2 = Language(path=model_dir)
 | |
| 
 | |
|     for raw_text, entity_offsets in train_data:
 | |
|         doc = nlp2(raw_text)
 | |
|         ents = {(ent.start_char, ent.end_char): ent.label_ for ent in doc.ents}
 | |
|         for start, end, label in entity_offsets:
 | |
|             if (start, end) in ents:
 | |
|                 assert ents[(start, end)] == label
 | |
|                 break
 | |
|         else:
 | |
|             if entity_offsets:
 | |
|                 raise Exception(ents)
 |