mirror of
https://github.com/explosion/spaCy.git
synced 2024-11-11 12:18:04 +03:00
a4b32b9552
* Handle missing reference values in scorer Handle missing values in reference doc during scoring where it is possible to detect an unset state for the attribute. If no reference docs contain annotation, `None` is returned instead of a score. `spacy evaluate` displays `-` for missing scores and the missing scores are saved as `None`/`null` in the metrics. Attributes without unset states: * `token.head`: relies on `token.dep` to recognize unset values * `doc.cats`: unable to handle missing annotation Additional changes: * add optional `has_annotation` check to `score_scans` to replace `doc.sents` hack * update `score_token_attr_per_feat` to handle missing and empty morph representations * fix bug in `Doc.has_annotation` for normalization of `IS_SENT_START` vs. `SENT_START` * Fix import * Update return types
173 lines
6.1 KiB
Cython
173 lines
6.1 KiB
Cython
# cython: infer_types=True, profile=True, binding=True
|
|
from typing import Optional, Iterable
|
|
from thinc.api import Model, Config
|
|
|
|
from .transition_parser cimport Parser
|
|
from ._parser_internals.arc_eager cimport ArcEager
|
|
|
|
from .functions import merge_subtokens
|
|
from ..language import Language
|
|
from ._parser_internals import nonproj
|
|
from ..scorer import Scorer
|
|
from ..training import validate_examples
|
|
|
|
|
|
default_model_config = """
|
|
[model]
|
|
@architectures = "spacy.TransitionBasedParser.v1"
|
|
state_type = "parser"
|
|
extra_state_tokens = false
|
|
hidden_width = 64
|
|
maxout_pieces = 2
|
|
|
|
[model.tok2vec]
|
|
@architectures = "spacy.HashEmbedCNN.v1"
|
|
pretrained_vectors = null
|
|
width = 96
|
|
depth = 4
|
|
embed_size = 2000
|
|
window_size = 1
|
|
maxout_pieces = 3
|
|
subword_features = true
|
|
"""
|
|
DEFAULT_PARSER_MODEL = Config().from_str(default_model_config)["model"]
|
|
|
|
|
|
@Language.factory(
|
|
"parser",
|
|
assigns=["token.dep", "token.head", "token.is_sent_start", "doc.sents"],
|
|
default_config={
|
|
"moves": None,
|
|
"update_with_oracle_cut_size": 100,
|
|
"learn_tokens": False,
|
|
"min_action_freq": 30,
|
|
"model": DEFAULT_PARSER_MODEL,
|
|
},
|
|
default_score_weights={
|
|
"dep_uas": 0.5,
|
|
"dep_las": 0.5,
|
|
"dep_las_per_type": None,
|
|
"sents_p": None,
|
|
"sents_r": None,
|
|
"sents_f": 0.0,
|
|
},
|
|
)
|
|
def make_parser(
|
|
nlp: Language,
|
|
name: str,
|
|
model: Model,
|
|
moves: Optional[list],
|
|
update_with_oracle_cut_size: int,
|
|
learn_tokens: bool,
|
|
min_action_freq: int
|
|
):
|
|
"""Create a transition-based DependencyParser component. The dependency parser
|
|
jointly learns sentence segmentation and labelled dependency parsing, and can
|
|
optionally learn to merge tokens that had been over-segmented by the tokenizer.
|
|
|
|
The parser uses a variant of the non-monotonic arc-eager transition-system
|
|
described by Honnibal and Johnson (2014), with the addition of a "break"
|
|
transition to perform the sentence segmentation. Nivre's pseudo-projective
|
|
dependency transformation is used to allow the parser to predict
|
|
non-projective parses.
|
|
|
|
The parser is trained using an imitation learning objective. The parser follows
|
|
the actions predicted by the current weights, and at each state, determines
|
|
which actions are compatible with the optimal parse that could be reached
|
|
from the current state. The weights such that the scores assigned to the
|
|
set of optimal actions is increased, while scores assigned to other
|
|
actions are decreased. Note that more than one action may be optimal for
|
|
a given state.
|
|
|
|
model (Model): The model for the transition-based parser. The model needs
|
|
to have a specific substructure of named components --- see the
|
|
spacy.ml.tb_framework.TransitionModel for details.
|
|
moves (List[str]): A list of transition names. Inferred from the data if not
|
|
provided.
|
|
update_with_oracle_cut_size (int):
|
|
During training, cut long sequences into shorter segments by creating
|
|
intermediate states based on the gold-standard history. The model is
|
|
not very sensitive to this parameter, so you usually won't need to change
|
|
it. 100 is a good default.
|
|
learn_tokens (bool): Whether to learn to merge subtokens that are split
|
|
relative to the gold standard. Experimental.
|
|
min_action_freq (int): The minimum frequency of labelled actions to retain.
|
|
Rarer labelled actions have their label backed-off to "dep". While this
|
|
primarily affects the label accuracy, it can also affect the attachment
|
|
structure, as the labels are used to represent the pseudo-projectivity
|
|
transformation.
|
|
"""
|
|
return DependencyParser(
|
|
nlp.vocab,
|
|
model,
|
|
name,
|
|
moves=moves,
|
|
update_with_oracle_cut_size=update_with_oracle_cut_size,
|
|
multitasks=[],
|
|
learn_tokens=learn_tokens,
|
|
min_action_freq=min_action_freq
|
|
)
|
|
|
|
|
|
cdef class DependencyParser(Parser):
|
|
"""Pipeline component for dependency parsing.
|
|
|
|
DOCS: https://nightly.spacy.io/api/dependencyparser
|
|
"""
|
|
TransitionSystem = ArcEager
|
|
|
|
@property
|
|
def postprocesses(self):
|
|
output = [nonproj.deprojectivize]
|
|
if self.cfg.get("learn_tokens") is True:
|
|
output.append(merge_subtokens)
|
|
return tuple(output)
|
|
|
|
def add_multitask_objective(self, mt_component):
|
|
self._multitasks.append(mt_component)
|
|
|
|
def init_multitask_objectives(self, get_examples, nlp=None, **cfg):
|
|
# TODO: transfer self.model.get_ref("tok2vec") to the multitask's model ?
|
|
for labeller in self._multitasks:
|
|
labeller.model.set_dim("nO", len(self.labels))
|
|
if labeller.model.has_ref("output_layer"):
|
|
labeller.model.get_ref("output_layer").set_dim("nO", len(self.labels))
|
|
labeller.initialize(get_examples, nlp=nlp)
|
|
|
|
@property
|
|
def labels(self):
|
|
labels = set()
|
|
# Get the labels from the model by looking at the available moves
|
|
for move in self.move_names:
|
|
if "-" in move:
|
|
label = move.split("-")[1]
|
|
if "||" in label:
|
|
label = label.split("||")[1]
|
|
labels.add(label)
|
|
return tuple(sorted(labels))
|
|
|
|
def score(self, examples, **kwargs):
|
|
"""Score a batch of examples.
|
|
|
|
examples (Iterable[Example]): The examples to score.
|
|
RETURNS (Dict[str, Any]): The scores, produced by Scorer.score_spans
|
|
and Scorer.score_deps.
|
|
|
|
DOCS: https://nightly.spacy.io/api/dependencyparser#score
|
|
"""
|
|
def has_sents(doc):
|
|
return doc.has_annotation("SENT_START")
|
|
|
|
validate_examples(examples, "DependencyParser.score")
|
|
def dep_getter(token, attr):
|
|
dep = getattr(token, attr)
|
|
dep = token.vocab.strings.as_string(dep).lower()
|
|
return dep
|
|
results = {}
|
|
results.update(Scorer.score_spans(examples, "sents", has_annotation=has_sents, **kwargs))
|
|
kwargs.setdefault("getter", dep_getter)
|
|
kwargs.setdefault("ignore_labels", ("p", "punct"))
|
|
results.update(Scorer.score_deps(examples, "dep", **kwargs))
|
|
del results["sents_per_type"]
|
|
return results
|