mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-10-31 16:07:41 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			590 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			590 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| from typing import Callable, Iterable
 | |
| import pytest
 | |
| from numpy.testing import assert_equal
 | |
| from spacy.attrs import ENT_KB_ID
 | |
| 
 | |
| from spacy.kb import KnowledgeBase, get_candidates, Candidate
 | |
| from spacy.vocab import Vocab
 | |
| 
 | |
| from spacy import util, registry
 | |
| from spacy.ml import load_kb
 | |
| from spacy.scorer import Scorer
 | |
| from spacy.training import Example
 | |
| from spacy.lang.en import English
 | |
| from spacy.tests.util import make_tempdir
 | |
| from spacy.tokens import Span
 | |
| 
 | |
| 
 | |
| @pytest.fixture
 | |
| def nlp():
 | |
|     return English()
 | |
| 
 | |
| 
 | |
| def assert_almost_equal(a, b):
 | |
|     delta = 0.0001
 | |
|     assert a - delta <= b <= a + delta
 | |
| 
 | |
| 
 | |
| def test_kb_valid_entities(nlp):
 | |
|     """Test the valid construction of a KB with 3 entities and two aliases"""
 | |
|     mykb = KnowledgeBase(nlp.vocab, entity_vector_length=3)
 | |
| 
 | |
|     # adding entities
 | |
|     mykb.add_entity(entity="Q1", freq=19, entity_vector=[8, 4, 3])
 | |
|     mykb.add_entity(entity="Q2", freq=5, entity_vector=[2, 1, 0])
 | |
|     mykb.add_entity(entity="Q3", freq=25, entity_vector=[-1, -6, 5])
 | |
| 
 | |
|     # adding aliases
 | |
|     mykb.add_alias(alias="douglas", entities=["Q2", "Q3"], probabilities=[0.8, 0.2])
 | |
|     mykb.add_alias(alias="adam", entities=["Q2"], probabilities=[0.9])
 | |
| 
 | |
|     # test the size of the corresponding KB
 | |
|     assert mykb.get_size_entities() == 3
 | |
|     assert mykb.get_size_aliases() == 2
 | |
| 
 | |
|     # test retrieval of the entity vectors
 | |
|     assert mykb.get_vector("Q1") == [8, 4, 3]
 | |
|     assert mykb.get_vector("Q2") == [2, 1, 0]
 | |
|     assert mykb.get_vector("Q3") == [-1, -6, 5]
 | |
| 
 | |
|     # test retrieval of prior probabilities
 | |
|     assert_almost_equal(mykb.get_prior_prob(entity="Q2", alias="douglas"), 0.8)
 | |
|     assert_almost_equal(mykb.get_prior_prob(entity="Q3", alias="douglas"), 0.2)
 | |
|     assert_almost_equal(mykb.get_prior_prob(entity="Q342", alias="douglas"), 0.0)
 | |
|     assert_almost_equal(mykb.get_prior_prob(entity="Q3", alias="douglassssss"), 0.0)
 | |
| 
 | |
| 
 | |
| def test_kb_invalid_entities(nlp):
 | |
|     """Test the invalid construction of a KB with an alias linked to a non-existing entity"""
 | |
|     mykb = KnowledgeBase(nlp.vocab, entity_vector_length=1)
 | |
| 
 | |
|     # adding entities
 | |
|     mykb.add_entity(entity="Q1", freq=19, entity_vector=[1])
 | |
|     mykb.add_entity(entity="Q2", freq=5, entity_vector=[2])
 | |
|     mykb.add_entity(entity="Q3", freq=25, entity_vector=[3])
 | |
| 
 | |
|     # adding aliases - should fail because one of the given IDs is not valid
 | |
|     with pytest.raises(ValueError):
 | |
|         mykb.add_alias(
 | |
|             alias="douglas", entities=["Q2", "Q342"], probabilities=[0.8, 0.2]
 | |
|         )
 | |
| 
 | |
| 
 | |
| def test_kb_invalid_probabilities(nlp):
 | |
|     """Test the invalid construction of a KB with wrong prior probabilities"""
 | |
|     mykb = KnowledgeBase(nlp.vocab, entity_vector_length=1)
 | |
| 
 | |
|     # adding entities
 | |
|     mykb.add_entity(entity="Q1", freq=19, entity_vector=[1])
 | |
|     mykb.add_entity(entity="Q2", freq=5, entity_vector=[2])
 | |
|     mykb.add_entity(entity="Q3", freq=25, entity_vector=[3])
 | |
| 
 | |
|     # adding aliases - should fail because the sum of the probabilities exceeds 1
 | |
|     with pytest.raises(ValueError):
 | |
|         mykb.add_alias(alias="douglas", entities=["Q2", "Q3"], probabilities=[0.8, 0.4])
 | |
| 
 | |
| 
 | |
| def test_kb_invalid_combination(nlp):
 | |
|     """Test the invalid construction of a KB with non-matching entity and probability lists"""
 | |
|     mykb = KnowledgeBase(nlp.vocab, entity_vector_length=1)
 | |
| 
 | |
|     # adding entities
 | |
|     mykb.add_entity(entity="Q1", freq=19, entity_vector=[1])
 | |
|     mykb.add_entity(entity="Q2", freq=5, entity_vector=[2])
 | |
|     mykb.add_entity(entity="Q3", freq=25, entity_vector=[3])
 | |
| 
 | |
|     # adding aliases - should fail because the entities and probabilities vectors are not of equal length
 | |
|     with pytest.raises(ValueError):
 | |
|         mykb.add_alias(
 | |
|             alias="douglas", entities=["Q2", "Q3"], probabilities=[0.3, 0.4, 0.1]
 | |
|         )
 | |
| 
 | |
| 
 | |
| def test_kb_invalid_entity_vector(nlp):
 | |
|     """Test the invalid construction of a KB with non-matching entity vector lengths"""
 | |
|     mykb = KnowledgeBase(nlp.vocab, entity_vector_length=3)
 | |
| 
 | |
|     # adding entities
 | |
|     mykb.add_entity(entity="Q1", freq=19, entity_vector=[1, 2, 3])
 | |
| 
 | |
|     # this should fail because the kb's expected entity vector length is 3
 | |
|     with pytest.raises(ValueError):
 | |
|         mykb.add_entity(entity="Q2", freq=5, entity_vector=[2])
 | |
| 
 | |
| 
 | |
| def test_kb_default(nlp):
 | |
|     """Test that the default (empty) KB is loaded upon construction"""
 | |
|     entity_linker = nlp.add_pipe("entity_linker", config={})
 | |
|     assert len(entity_linker.kb) == 0
 | |
|     assert entity_linker.kb.get_size_entities() == 0
 | |
|     assert entity_linker.kb.get_size_aliases() == 0
 | |
|     # 64 is the default value from pipeline.entity_linker
 | |
|     assert entity_linker.kb.entity_vector_length == 64
 | |
| 
 | |
| 
 | |
| def test_kb_custom_length(nlp):
 | |
|     """Test that the default (empty) KB can be configured with a custom entity length"""
 | |
|     entity_linker = nlp.add_pipe("entity_linker", config={"entity_vector_length": 35})
 | |
|     assert len(entity_linker.kb) == 0
 | |
|     assert entity_linker.kb.get_size_entities() == 0
 | |
|     assert entity_linker.kb.get_size_aliases() == 0
 | |
|     assert entity_linker.kb.entity_vector_length == 35
 | |
| 
 | |
| 
 | |
| def test_kb_initialize_empty(nlp):
 | |
|     """Test that the EL can't initialize without examples"""
 | |
|     entity_linker = nlp.add_pipe("entity_linker")
 | |
|     with pytest.raises(TypeError):
 | |
|         entity_linker.initialize(lambda: [])
 | |
| 
 | |
| 
 | |
| def test_kb_serialize(nlp):
 | |
|     """Test serialization of the KB"""
 | |
|     mykb = KnowledgeBase(nlp.vocab, entity_vector_length=1)
 | |
|     with make_tempdir() as d:
 | |
|         # normal read-write behaviour
 | |
|         mykb.to_disk(d / "kb")
 | |
|         mykb.from_disk(d / "kb")
 | |
|         mykb.to_disk(d / "new" / "kb")
 | |
|         mykb.from_disk(d / "new" / "kb")
 | |
|         # allow overwriting an existing file
 | |
|         mykb.to_disk(d / "kb")
 | |
|         with pytest.raises(ValueError):
 | |
|             # can not read from an unknown file
 | |
|             mykb.from_disk(d / "unknown" / "kb")
 | |
| 
 | |
| 
 | |
| def test_kb_serialize_vocab(nlp):
 | |
|     """Test serialization of the KB and custom strings"""
 | |
|     entity = "MyFunnyID"
 | |
|     assert entity not in nlp.vocab.strings
 | |
|     mykb = KnowledgeBase(nlp.vocab, entity_vector_length=1)
 | |
|     assert not mykb.contains_entity(entity)
 | |
|     mykb.add_entity(entity, freq=342, entity_vector=[3])
 | |
|     assert mykb.contains_entity(entity)
 | |
|     assert entity in mykb.vocab.strings
 | |
|     with make_tempdir() as d:
 | |
|         # normal read-write behaviour
 | |
|         mykb.to_disk(d / "kb")
 | |
|         mykb_new = KnowledgeBase(Vocab(), entity_vector_length=1)
 | |
|         mykb_new.from_disk(d / "kb")
 | |
|         assert entity in mykb_new.vocab.strings
 | |
| 
 | |
| 
 | |
| def test_candidate_generation(nlp):
 | |
|     """Test correct candidate generation"""
 | |
|     mykb = KnowledgeBase(nlp.vocab, entity_vector_length=1)
 | |
|     doc = nlp("douglas adam Adam shrubbery")
 | |
| 
 | |
|     douglas_ent = doc[0:1]
 | |
|     adam_ent = doc[1:2]
 | |
|     Adam_ent = doc[2:3]
 | |
|     shrubbery_ent = doc[3:4]
 | |
| 
 | |
|     # adding entities
 | |
|     mykb.add_entity(entity="Q1", freq=27, entity_vector=[1])
 | |
|     mykb.add_entity(entity="Q2", freq=12, entity_vector=[2])
 | |
|     mykb.add_entity(entity="Q3", freq=5, entity_vector=[3])
 | |
| 
 | |
|     # adding aliases
 | |
|     mykb.add_alias(alias="douglas", entities=["Q2", "Q3"], probabilities=[0.8, 0.1])
 | |
|     mykb.add_alias(alias="adam", entities=["Q2"], probabilities=[0.9])
 | |
| 
 | |
|     # test the size of the relevant candidates
 | |
|     assert len(get_candidates(mykb, douglas_ent)) == 2
 | |
|     assert len(get_candidates(mykb, adam_ent)) == 1
 | |
|     assert len(get_candidates(mykb, Adam_ent)) == 0  # default case sensitive
 | |
|     assert len(get_candidates(mykb, shrubbery_ent)) == 0
 | |
| 
 | |
|     # test the content of the candidates
 | |
|     assert get_candidates(mykb, adam_ent)[0].entity_ == "Q2"
 | |
|     assert get_candidates(mykb, adam_ent)[0].alias_ == "adam"
 | |
|     assert_almost_equal(get_candidates(mykb, adam_ent)[0].entity_freq, 12)
 | |
|     assert_almost_equal(get_candidates(mykb, adam_ent)[0].prior_prob, 0.9)
 | |
| 
 | |
| 
 | |
| def test_el_pipe_configuration(nlp):
 | |
|     """Test correct candidate generation as part of the EL pipe"""
 | |
|     nlp.add_pipe("sentencizer")
 | |
|     pattern = {"label": "PERSON", "pattern": [{"LOWER": "douglas"}]}
 | |
|     ruler = nlp.add_pipe("entity_ruler")
 | |
|     ruler.add_patterns([pattern])
 | |
| 
 | |
|     def create_kb(vocab):
 | |
|         kb = KnowledgeBase(vocab, entity_vector_length=1)
 | |
|         kb.add_entity(entity="Q2", freq=12, entity_vector=[2])
 | |
|         kb.add_entity(entity="Q3", freq=5, entity_vector=[3])
 | |
|         kb.add_alias(alias="douglas", entities=["Q2", "Q3"], probabilities=[0.8, 0.1])
 | |
|         return kb
 | |
| 
 | |
|     # run an EL pipe without a trained context encoder, to check the candidate generation step only
 | |
|     entity_linker = nlp.add_pipe("entity_linker", config={"incl_context": False})
 | |
|     entity_linker.set_kb(create_kb)
 | |
|     # With the default get_candidates function, matching is case-sensitive
 | |
|     text = "Douglas and douglas are not the same."
 | |
|     doc = nlp(text)
 | |
|     assert doc[0].ent_kb_id_ == "NIL"
 | |
|     assert doc[1].ent_kb_id_ == ""
 | |
|     assert doc[2].ent_kb_id_ == "Q2"
 | |
| 
 | |
|     def get_lowercased_candidates(kb, span):
 | |
|         return kb.get_alias_candidates(span.text.lower())
 | |
| 
 | |
|     @registry.misc("spacy.LowercaseCandidateGenerator.v1")
 | |
|     def create_candidates() -> Callable[[KnowledgeBase, "Span"], Iterable[Candidate]]:
 | |
|         return get_lowercased_candidates
 | |
| 
 | |
|     # replace the pipe with a new one with with a different candidate generator
 | |
|     entity_linker = nlp.replace_pipe(
 | |
|         "entity_linker",
 | |
|         "entity_linker",
 | |
|         config={
 | |
|             "incl_context": False,
 | |
|             "get_candidates": {"@misc": "spacy.LowercaseCandidateGenerator.v1"},
 | |
|         },
 | |
|     )
 | |
|     entity_linker.set_kb(create_kb)
 | |
|     doc = nlp(text)
 | |
|     assert doc[0].ent_kb_id_ == "Q2"
 | |
|     assert doc[1].ent_kb_id_ == ""
 | |
|     assert doc[2].ent_kb_id_ == "Q2"
 | |
| 
 | |
| 
 | |
| def test_nel_nsents(nlp):
 | |
|     """Test that n_sents can be set through the configuration"""
 | |
|     entity_linker = nlp.add_pipe("entity_linker", config={})
 | |
|     assert entity_linker.n_sents == 0
 | |
|     entity_linker = nlp.replace_pipe("entity_linker", "entity_linker", config={"n_sents": 2})
 | |
|     assert entity_linker.n_sents == 2
 | |
| 
 | |
| 
 | |
| def test_vocab_serialization(nlp):
 | |
|     """Test that string information is retained across storage"""
 | |
|     mykb = KnowledgeBase(nlp.vocab, entity_vector_length=1)
 | |
| 
 | |
|     # adding entities
 | |
|     mykb.add_entity(entity="Q1", freq=27, entity_vector=[1])
 | |
|     q2_hash = mykb.add_entity(entity="Q2", freq=12, entity_vector=[2])
 | |
|     mykb.add_entity(entity="Q3", freq=5, entity_vector=[3])
 | |
| 
 | |
|     # adding aliases
 | |
|     mykb.add_alias(alias="douglas", entities=["Q2", "Q3"], probabilities=[0.4, 0.1])
 | |
|     adam_hash = mykb.add_alias(alias="adam", entities=["Q2"], probabilities=[0.9])
 | |
| 
 | |
|     candidates = mykb.get_alias_candidates("adam")
 | |
|     assert len(candidates) == 1
 | |
|     assert candidates[0].entity == q2_hash
 | |
|     assert candidates[0].entity_ == "Q2"
 | |
|     assert candidates[0].alias == adam_hash
 | |
|     assert candidates[0].alias_ == "adam"
 | |
| 
 | |
|     with make_tempdir() as d:
 | |
|         mykb.to_disk(d / "kb")
 | |
|         kb_new_vocab = KnowledgeBase(Vocab(), entity_vector_length=1)
 | |
|         kb_new_vocab.from_disk(d / "kb")
 | |
| 
 | |
|         candidates = kb_new_vocab.get_alias_candidates("adam")
 | |
|         assert len(candidates) == 1
 | |
|         assert candidates[0].entity == q2_hash
 | |
|         assert candidates[0].entity_ == "Q2"
 | |
|         assert candidates[0].alias == adam_hash
 | |
|         assert candidates[0].alias_ == "adam"
 | |
| 
 | |
| 
 | |
| def test_append_alias(nlp):
 | |
|     """Test that we can append additional alias-entity pairs"""
 | |
|     mykb = KnowledgeBase(nlp.vocab, entity_vector_length=1)
 | |
| 
 | |
|     # adding entities
 | |
|     mykb.add_entity(entity="Q1", freq=27, entity_vector=[1])
 | |
|     mykb.add_entity(entity="Q2", freq=12, entity_vector=[2])
 | |
|     mykb.add_entity(entity="Q3", freq=5, entity_vector=[3])
 | |
| 
 | |
|     # adding aliases
 | |
|     mykb.add_alias(alias="douglas", entities=["Q2", "Q3"], probabilities=[0.4, 0.1])
 | |
|     mykb.add_alias(alias="adam", entities=["Q2"], probabilities=[0.9])
 | |
| 
 | |
|     # test the size of the relevant candidates
 | |
|     assert len(mykb.get_alias_candidates("douglas")) == 2
 | |
| 
 | |
|     # append an alias
 | |
|     mykb.append_alias(alias="douglas", entity="Q1", prior_prob=0.2)
 | |
| 
 | |
|     # test the size of the relevant candidates has been incremented
 | |
|     assert len(mykb.get_alias_candidates("douglas")) == 3
 | |
| 
 | |
|     # append the same alias-entity pair again should not work (will throw a warning)
 | |
|     with pytest.warns(UserWarning):
 | |
|         mykb.append_alias(alias="douglas", entity="Q1", prior_prob=0.3)
 | |
| 
 | |
|     # test the size of the relevant candidates remained unchanged
 | |
|     assert len(mykb.get_alias_candidates("douglas")) == 3
 | |
| 
 | |
| 
 | |
| def test_append_invalid_alias(nlp):
 | |
|     """Test that append an alias will throw an error if prior probs are exceeding 1"""
 | |
|     mykb = KnowledgeBase(nlp.vocab, entity_vector_length=1)
 | |
| 
 | |
|     # adding entities
 | |
|     mykb.add_entity(entity="Q1", freq=27, entity_vector=[1])
 | |
|     mykb.add_entity(entity="Q2", freq=12, entity_vector=[2])
 | |
|     mykb.add_entity(entity="Q3", freq=5, entity_vector=[3])
 | |
| 
 | |
|     # adding aliases
 | |
|     mykb.add_alias(alias="douglas", entities=["Q2", "Q3"], probabilities=[0.8, 0.1])
 | |
|     mykb.add_alias(alias="adam", entities=["Q2"], probabilities=[0.9])
 | |
| 
 | |
|     # append an alias - should fail because the entities and probabilities vectors are not of equal length
 | |
|     with pytest.raises(ValueError):
 | |
|         mykb.append_alias(alias="douglas", entity="Q1", prior_prob=0.2)
 | |
| 
 | |
| 
 | |
| def test_preserving_links_asdoc(nlp):
 | |
|     """Test that Span.as_doc preserves the existing entity links"""
 | |
|     vector_length = 1
 | |
| 
 | |
|     def create_kb(vocab):
 | |
|         mykb = KnowledgeBase(vocab, entity_vector_length=vector_length)
 | |
|         # adding entities
 | |
|         mykb.add_entity(entity="Q1", freq=19, entity_vector=[1])
 | |
|         mykb.add_entity(entity="Q2", freq=8, entity_vector=[1])
 | |
|         # adding aliases
 | |
|         mykb.add_alias(alias="Boston", entities=["Q1"], probabilities=[0.7])
 | |
|         mykb.add_alias(alias="Denver", entities=["Q2"], probabilities=[0.6])
 | |
|         return mykb
 | |
| 
 | |
|     # set up pipeline with NER (Entity Ruler) and NEL (prior probability only, model not trained)
 | |
|     nlp.add_pipe("sentencizer")
 | |
|     patterns = [
 | |
|         {"label": "GPE", "pattern": "Boston"},
 | |
|         {"label": "GPE", "pattern": "Denver"},
 | |
|     ]
 | |
|     ruler = nlp.add_pipe("entity_ruler")
 | |
|     ruler.add_patterns(patterns)
 | |
|     config = {"incl_prior": False}
 | |
|     entity_linker = nlp.add_pipe("entity_linker", config=config, last=True)
 | |
|     entity_linker.set_kb(create_kb)
 | |
|     nlp.initialize()
 | |
|     assert entity_linker.model.get_dim("nO") == vector_length
 | |
| 
 | |
|     # test whether the entity links are preserved by the `as_doc()` function
 | |
|     text = "She lives in Boston. He lives in Denver."
 | |
|     doc = nlp(text)
 | |
|     for ent in doc.ents:
 | |
|         orig_text = ent.text
 | |
|         orig_kb_id = ent.kb_id_
 | |
|         sent_doc = ent.sent.as_doc()
 | |
|         for s_ent in sent_doc.ents:
 | |
|             if s_ent.text == orig_text:
 | |
|                 assert s_ent.kb_id_ == orig_kb_id
 | |
| 
 | |
| 
 | |
| def test_preserving_links_ents(nlp):
 | |
|     """Test that doc.ents preserves KB annotations"""
 | |
|     text = "She lives in Boston. He lives in Denver."
 | |
|     doc = nlp(text)
 | |
|     assert len(list(doc.ents)) == 0
 | |
| 
 | |
|     boston_ent = Span(doc, 3, 4, label="LOC", kb_id="Q1")
 | |
|     doc.ents = [boston_ent]
 | |
|     assert len(list(doc.ents)) == 1
 | |
|     assert list(doc.ents)[0].label_ == "LOC"
 | |
|     assert list(doc.ents)[0].kb_id_ == "Q1"
 | |
| 
 | |
| 
 | |
| def test_preserving_links_ents_2(nlp):
 | |
|     """Test that doc.ents preserves KB annotations"""
 | |
|     text = "She lives in Boston. He lives in Denver."
 | |
|     doc = nlp(text)
 | |
|     assert len(list(doc.ents)) == 0
 | |
| 
 | |
|     loc = doc.vocab.strings.add("LOC")
 | |
|     q1 = doc.vocab.strings.add("Q1")
 | |
| 
 | |
|     doc.ents = [(loc, q1, 3, 4)]
 | |
|     assert len(list(doc.ents)) == 1
 | |
|     assert list(doc.ents)[0].label_ == "LOC"
 | |
|     assert list(doc.ents)[0].kb_id_ == "Q1"
 | |
| 
 | |
| 
 | |
| # fmt: off
 | |
| TRAIN_DATA = [
 | |
|     ("Russ Cochran captured his first major title with his son as caddie.",
 | |
|         {"links": {(0, 12): {"Q7381115": 0.0, "Q2146908": 1.0}},
 | |
|          "entities": [(0, 12, "PERSON")],
 | |
|          "sent_starts": [1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]}),
 | |
|     ("Russ Cochran his reprints include EC Comics.",
 | |
|         {"links": {(0, 12): {"Q7381115": 1.0, "Q2146908": 0.0}},
 | |
|          "entities": [(0, 12, "PERSON")],
 | |
|          "sent_starts": [1, -1, 0, 0, 0, 0, 0, 0]}),
 | |
|     ("Russ Cochran has been publishing comic art.",
 | |
|         {"links": {(0, 12): {"Q7381115": 1.0, "Q2146908": 0.0}},
 | |
|          "entities": [(0, 12, "PERSON")],
 | |
|          "sent_starts": [1, -1, 0, 0, 0, 0, 0, 0]}),
 | |
|     ("Russ Cochran was a member of University of Kentucky's golf team.",
 | |
|         {"links": {(0, 12): {"Q7381115": 0.0, "Q2146908": 1.0}},
 | |
|          "entities": [(0, 12, "PERSON"), (43, 51, "LOC")],
 | |
|          "sent_starts": [1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]})
 | |
| ]
 | |
| GOLD_entities = ["Q2146908", "Q7381115", "Q7381115", "Q2146908"]
 | |
| # fmt: on
 | |
| 
 | |
| 
 | |
| def test_overfitting_IO():
 | |
|     # Simple test to try and quickly overfit the NEL component - ensuring the ML models work correctly
 | |
|     nlp = English()
 | |
|     vector_length = 3
 | |
|     assert "Q2146908" not in nlp.vocab.strings
 | |
| 
 | |
|     # Convert the texts to docs to make sure we have doc.ents set for the training examples
 | |
|     train_examples = []
 | |
|     for text, annotation in TRAIN_DATA:
 | |
|         doc = nlp(text)
 | |
|         train_examples.append(Example.from_dict(doc, annotation))
 | |
| 
 | |
|     def create_kb(vocab):
 | |
|         # create artificial KB - assign same prior weight to the two russ cochran's
 | |
|         # Q2146908 (Russ Cochran): American golfer
 | |
|         # Q7381115 (Russ Cochran): publisher
 | |
|         mykb = KnowledgeBase(vocab, entity_vector_length=vector_length)
 | |
|         mykb.add_entity(entity="Q2146908", freq=12, entity_vector=[6, -4, 3])
 | |
|         mykb.add_entity(entity="Q7381115", freq=12, entity_vector=[9, 1, -7])
 | |
|         mykb.add_alias(
 | |
|             alias="Russ Cochran",
 | |
|             entities=["Q2146908", "Q7381115"],
 | |
|             probabilities=[0.5, 0.5],
 | |
|         )
 | |
|         return mykb
 | |
| 
 | |
|     # Create the Entity Linker component and add it to the pipeline
 | |
|     entity_linker = nlp.add_pipe("entity_linker", last=True)
 | |
|     entity_linker.set_kb(create_kb)
 | |
|     assert "Q2146908" in entity_linker.vocab.strings
 | |
|     assert "Q2146908" in entity_linker.kb.vocab.strings
 | |
| 
 | |
|     # train the NEL pipe
 | |
|     optimizer = nlp.initialize(get_examples=lambda: train_examples)
 | |
|     assert entity_linker.model.get_dim("nO") == vector_length
 | |
|     assert entity_linker.model.get_dim("nO") == entity_linker.kb.entity_vector_length
 | |
| 
 | |
|     for i in range(50):
 | |
|         losses = {}
 | |
|         nlp.update(train_examples, sgd=optimizer, losses=losses)
 | |
|     assert losses["entity_linker"] < 0.001
 | |
| 
 | |
|     # adding additional components that are required for the entity_linker
 | |
|     nlp.add_pipe("sentencizer", first=True)
 | |
| 
 | |
|     # Add a custom component to recognize "Russ Cochran" as an entity for the example training data
 | |
|     patterns = [
 | |
|         {"label": "PERSON", "pattern": [{"LOWER": "russ"}, {"LOWER": "cochran"}]}
 | |
|     ]
 | |
|     ruler = nlp.add_pipe("entity_ruler", before="entity_linker")
 | |
|     ruler.add_patterns(patterns)
 | |
| 
 | |
|     # test the trained model
 | |
|     predictions = []
 | |
|     for text, annotation in TRAIN_DATA:
 | |
|         doc = nlp(text)
 | |
|         for ent in doc.ents:
 | |
|             predictions.append(ent.kb_id_)
 | |
|     assert predictions == GOLD_entities
 | |
| 
 | |
|     # Also test the results are still the same after IO
 | |
|     with make_tempdir() as tmp_dir:
 | |
|         nlp.to_disk(tmp_dir)
 | |
|         nlp2 = util.load_model_from_path(tmp_dir)
 | |
|         assert nlp2.pipe_names == nlp.pipe_names
 | |
|         assert "Q2146908" in nlp2.vocab.strings
 | |
|         entity_linker2 = nlp2.get_pipe("entity_linker")
 | |
|         assert "Q2146908" in entity_linker2.vocab.strings
 | |
|         assert "Q2146908" in entity_linker2.kb.vocab.strings
 | |
|         predictions = []
 | |
|         for text, annotation in TRAIN_DATA:
 | |
|             doc2 = nlp2(text)
 | |
|             for ent in doc2.ents:
 | |
|                 predictions.append(ent.kb_id_)
 | |
|         assert predictions == GOLD_entities
 | |
| 
 | |
|     # Make sure that running pipe twice, or comparing to call, always amounts to the same predictions
 | |
|     texts = [
 | |
|         "Russ Cochran captured his first major title with his son as caddie.",
 | |
|         "Russ Cochran his reprints include EC Comics.",
 | |
|         "Russ Cochran has been publishing comic art.",
 | |
|         "Russ Cochran was a member of University of Kentucky's golf team.",
 | |
|     ]
 | |
|     batch_deps_1 = [doc.to_array([ENT_KB_ID]) for doc in nlp.pipe(texts)]
 | |
|     batch_deps_2 = [doc.to_array([ENT_KB_ID]) for doc in nlp.pipe(texts)]
 | |
|     no_batch_deps = [doc.to_array([ENT_KB_ID]) for doc in [nlp(text) for text in texts]]
 | |
|     assert_equal(batch_deps_1, batch_deps_2)
 | |
|     assert_equal(batch_deps_1, no_batch_deps)
 | |
| 
 | |
| 
 | |
| def test_kb_serialization():
 | |
|     # Test that the KB can be used in a pipeline with a different vocab
 | |
|     vector_length = 3
 | |
|     with make_tempdir() as tmp_dir:
 | |
|         kb_dir = tmp_dir / "kb"
 | |
|         nlp1 = English()
 | |
|         assert "Q2146908" not in nlp1.vocab.strings
 | |
|         mykb = KnowledgeBase(nlp1.vocab, entity_vector_length=vector_length)
 | |
|         mykb.add_entity(entity="Q2146908", freq=12, entity_vector=[6, -4, 3])
 | |
|         mykb.add_alias(alias="Russ Cochran", entities=["Q2146908"], probabilities=[0.8])
 | |
|         assert "Q2146908" in nlp1.vocab.strings
 | |
|         mykb.to_disk(kb_dir)
 | |
| 
 | |
|         nlp2 = English()
 | |
|         assert "RandomWord" not in nlp2.vocab.strings
 | |
|         nlp2.vocab.strings.add("RandomWord")
 | |
|         assert "RandomWord" in nlp2.vocab.strings
 | |
|         assert "Q2146908" not in nlp2.vocab.strings
 | |
| 
 | |
|         # Create the Entity Linker component with the KB from file, and check the final vocab
 | |
|         entity_linker = nlp2.add_pipe("entity_linker", last=True)
 | |
|         entity_linker.set_kb(load_kb(kb_dir))
 | |
|         assert "Q2146908" in nlp2.vocab.strings
 | |
|         assert "RandomWord" in nlp2.vocab.strings
 | |
| 
 | |
| 
 | |
| def test_scorer_links():
 | |
|     train_examples = []
 | |
|     nlp = English()
 | |
|     ref1 = nlp("Julia lives in London happily.")
 | |
|     ref1.ents = [
 | |
|         Span(ref1, 0, 1, label="PERSON", kb_id="Q2"),
 | |
|         Span(ref1, 3, 4, label="LOC", kb_id="Q3"),
 | |
|     ]
 | |
|     pred1 = nlp("Julia lives in London happily.")
 | |
|     pred1.ents = [
 | |
|         Span(pred1, 0, 1, label="PERSON", kb_id="Q70"),
 | |
|         Span(pred1, 3, 4, label="LOC", kb_id="Q3"),
 | |
|     ]
 | |
|     train_examples.append(Example(pred1, ref1))
 | |
| 
 | |
|     ref2 = nlp("She loves London.")
 | |
|     ref2.ents = [
 | |
|         Span(ref2, 0, 1, label="PERSON", kb_id="Q2"),
 | |
|         Span(ref2, 2, 3, label="LOC", kb_id="Q13"),
 | |
|     ]
 | |
|     pred2 = nlp("She loves London.")
 | |
|     pred2.ents = [
 | |
|         Span(pred2, 0, 1, label="PERSON", kb_id="Q2"),
 | |
|         Span(pred2, 2, 3, label="LOC", kb_id="NIL"),
 | |
|     ]
 | |
|     train_examples.append(Example(pred2, ref2))
 | |
| 
 | |
|     ref3 = nlp("London is great.")
 | |
|     ref3.ents = [Span(ref3, 0, 1, label="LOC", kb_id="NIL")]
 | |
|     pred3 = nlp("London is great.")
 | |
|     pred3.ents = [Span(pred3, 0, 1, label="LOC", kb_id="NIL")]
 | |
|     train_examples.append(Example(pred3, ref3))
 | |
| 
 | |
|     scores = Scorer().score_links(train_examples, negative_labels=["NIL"])
 | |
|     assert scores["nel_f_per_type"]["PERSON"]["p"] == 1 / 2
 | |
|     assert scores["nel_f_per_type"]["PERSON"]["r"] == 1 / 2
 | |
|     assert scores["nel_f_per_type"]["LOC"]["p"] == 1 / 1
 | |
|     assert scores["nel_f_per_type"]["LOC"]["r"] == 1 / 2
 | |
| 
 | |
|     assert scores["nel_micro_p"] == 2 / 3
 | |
|     assert scores["nel_micro_r"] == 2 / 4
 |