mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-10-31 07:57:35 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			445 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
			
		
		
	
	
			445 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
| //- 💫 DOCS > API > VECTORS
 | ||
| 
 | ||
| include ../_includes/_mixins
 | ||
| 
 | ||
| p
 | ||
|     |  Vectors data is kept in the #[code Vectors.data] attribute, which should
 | ||
|     |  be an instance of #[code numpy.ndarray] (for CPU vectors) or
 | ||
|     |  #[code cupy.ndarray] (for GPU vectors). Multiple keys can be mapped to
 | ||
|     |  the same vector, and not all of the rows in the table need to be
 | ||
|     |  assigned – so #[code vectors.n_keys] may be greater or smaller than
 | ||
|     |  #[code vectors.shape[0]].
 | ||
| 
 | ||
| +h(2, "init") Vectors.__init__
 | ||
|     +tag method
 | ||
| 
 | ||
| p
 | ||
|     |  Create a new vector store. You can set the vector values and keys
 | ||
|     |  directly on initialisation, or supply a #[code shape] keyword argument
 | ||
|     |  to create an empty table you can add vectors to later.
 | ||
| 
 | ||
| +aside-code("Example").
 | ||
|     from spacy.vectors import Vectors
 | ||
| 
 | ||
|     empty_vectors = Vectors(shape=(10000, 300))
 | ||
| 
 | ||
|     data = numpy.zeros((3, 300), dtype='f')
 | ||
|     keys = [u'cat', u'dog', u'rat']
 | ||
|     vectors = Vectors(data=data, keys=keys)
 | ||
| 
 | ||
| +table(["Name", "Type", "Description"])
 | ||
|     +row
 | ||
|         +cell #[code data]
 | ||
|         +cell #[code.u-break ndarray[ndim=1, dtype='float32']]
 | ||
|         +cell The vector data.
 | ||
| 
 | ||
|     +row
 | ||
|         +cell #[code keys]
 | ||
|         +cell iterable
 | ||
|         +cell A sequence of keys aligned with the data.
 | ||
| 
 | ||
|     +row
 | ||
|         +cell #[code shape]
 | ||
|         +cell tuple
 | ||
|         +cell
 | ||
|             |  Size of the table as #[code (n_entries, n_columns)], the number
 | ||
|             |  of entries and number of columns. Not required if you're
 | ||
|             |  initialising the object with #[code data] and #[code keys].
 | ||
| 
 | ||
|     +row("foot")
 | ||
|         +cell returns
 | ||
|         +cell #[code Vectors]
 | ||
|         +cell The newly created object.
 | ||
| 
 | ||
| +h(2, "getitem") Vectors.__getitem__
 | ||
|     +tag method
 | ||
| 
 | ||
| p
 | ||
|     |  Get a vector by key. If the key is not found in the table, a
 | ||
|     |  #[code KeyError] is raised.
 | ||
| 
 | ||
| +aside-code("Example").
 | ||
|     cat_id = nlp.vocab.strings[u'cat']
 | ||
|     cat_vector = nlp.vocab.vectors[cat_id]
 | ||
|     assert cat_vector == nlp.vocab[u'cat'].vector
 | ||
| 
 | ||
| +table(["Name", "Type", "Description"])
 | ||
|     +row
 | ||
|         +cell #[code key]
 | ||
|         +cell int
 | ||
|         +cell The key to get the vector for.
 | ||
| 
 | ||
|     +row
 | ||
|         +cell returns
 | ||
|         +cell #[code.u-break ndarray[ndim=1, dtype='float32']]
 | ||
|         +cell The vector for the key.
 | ||
| 
 | ||
| +h(2, "setitem") Vectors.__setitem__
 | ||
|     +tag method
 | ||
| 
 | ||
| p
 | ||
|     |  Set a vector for the given key.
 | ||
| 
 | ||
| +aside-code("Example").
 | ||
|     cat_id = nlp.vocab.strings[u'cat']
 | ||
|     vector = numpy.random.uniform(-1, 1, (300,))
 | ||
|     nlp.vocab.vectors[cat_id] = vector
 | ||
| 
 | ||
| +table(["Name", "Type", "Description"])
 | ||
|     +row
 | ||
|         +cell #[code key]
 | ||
|         +cell int
 | ||
|         +cell The key to set the vector for.
 | ||
| 
 | ||
|     +row
 | ||
|         +cell #[code vector]
 | ||
|         +cell #[code.u-break ndarray[ndim=1, dtype='float32']]
 | ||
|         +cell The vector to set.
 | ||
| 
 | ||
| +h(2, "iter") Vectors.__iter__
 | ||
|     +tag method
 | ||
| 
 | ||
| p Iterate over the keys in the table.
 | ||
| 
 | ||
| +aside-code("Example").
 | ||
|     for key in nlp.vocab.vectors:
 | ||
|         print(key, nlp.vocab.strings[key])
 | ||
| 
 | ||
| +table(["Name", "Type", "Description"])
 | ||
|     +row("foot")
 | ||
|         +cell yields
 | ||
|         +cell int
 | ||
|         +cell A key in the table.
 | ||
| 
 | ||
| +h(2, "len") Vectors.__len__
 | ||
|     +tag method
 | ||
| 
 | ||
| p Return the number of vectors in the table.
 | ||
| 
 | ||
| +aside-code("Example").
 | ||
|     vectors = Vectors(shape=(3, 300))
 | ||
|     assert len(vectors) == 3
 | ||
| 
 | ||
| +table(["Name", "Type", "Description"])
 | ||
|     +row("foot")
 | ||
|         +cell returns
 | ||
|         +cell int
 | ||
|         +cell The number of vectors in the table.
 | ||
| 
 | ||
| +h(2, "contains") Vectors.__contains__
 | ||
|     +tag method
 | ||
| 
 | ||
| p
 | ||
|     |  Check whether a key has been mapped to a vector entry in the table.
 | ||
| 
 | ||
| +aside-code("Example").
 | ||
|     cat_id = nlp.vocab.strings[u'cat']
 | ||
|     nlp.vectors.add(cat_id, numpy.random.uniform(-1, 1, (300,)))
 | ||
|     assert cat_id in vectors
 | ||
| 
 | ||
| +table(["Name", "Type", "Description"])
 | ||
|     +row
 | ||
|         +cell #[code key]
 | ||
|         +cell int
 | ||
|         +cell The key to check.
 | ||
| 
 | ||
|     +row("foot")
 | ||
|         +cell returns
 | ||
|         +cell bool
 | ||
|         +cell Whether the key has a vector entry.
 | ||
| 
 | ||
| +h(2, "add") Vectors.add
 | ||
|     +tag method
 | ||
| 
 | ||
| p
 | ||
|     |  Add a key to the table, optionally setting a vector value as well. Keys
 | ||
|     |  can be mapped to an existing vector by setting #[code row], or a new
 | ||
|     |  vector can be added. When adding unicode keys, keep in mind that the
 | ||
|     |  #[code Vectors] class itself has no
 | ||
|     |  #[+api("stringstore") #[code StringStore]], so you have to store the
 | ||
|     |  hash-to-string mapping separately. If you need to manage the strings,
 | ||
|     |  you should use the #[code Vectors] via the
 | ||
|     |  #[+api("vocab") #[code Vocab]] class, e.g. #[code vocab.vectors].
 | ||
| 
 | ||
| +aside-code("Example").
 | ||
|     vector = numpy.random.uniform(-1, 1, (300,))
 | ||
|     cat_id = nlp.vocab.strings[u'cat']
 | ||
|     nlp.vocab.vectors.add(cat_id, vector=vector)
 | ||
|     nlp.vocab.vectors.add(u'dog', row=0)
 | ||
| 
 | ||
| +table(["Name", "Type", "Description"])
 | ||
|     +row
 | ||
|         +cell #[code key]
 | ||
|         +cell unicode / int
 | ||
|         +cell The key to add.
 | ||
| 
 | ||
|     +row
 | ||
|         +cell #[code vector]
 | ||
|         +cell #[code.u-break ndarray[ndim=1, dtype='float32']]
 | ||
|         +cell An optional vector to add for the key.
 | ||
| 
 | ||
|     +row
 | ||
|         +cell #[code row]
 | ||
|         +cell int
 | ||
|         +cell An optional row number of a vector to map the key to.
 | ||
| 
 | ||
|     +row("foot")
 | ||
|         +cell returns
 | ||
|         +cell int
 | ||
|         +cell The row the vector was added to.
 | ||
| 
 | ||
| +h(2, "keys") Vectors.keys
 | ||
|     +tag method
 | ||
| 
 | ||
| p A sequence of the keys in the table.
 | ||
| 
 | ||
| +aside-code("Example").
 | ||
|     for key in nlp.vocab.vectors.keys():
 | ||
|         print(key, nlp.vocab.strings[key])
 | ||
| 
 | ||
| +table(["Name", "Type", "Description"])
 | ||
|     +row("foot")
 | ||
|         +cell returns
 | ||
|         +cell iterable
 | ||
|         +cell The keys.
 | ||
| 
 | ||
| +h(2, "values") Vectors.values
 | ||
|     +tag method
 | ||
| 
 | ||
| p
 | ||
|     |  Iterate over vectors that have been assigned to at least one key. Note
 | ||
|     |  that some vectors may be unassigned, so the number of vectors returned
 | ||
|     |  may be less than the length of the vectors table.
 | ||
| 
 | ||
| +aside-code("Example").
 | ||
|     for vector in nlp.vocab.vectors.values():
 | ||
|         print(vector)
 | ||
| 
 | ||
| +table(["Name", "Type", "Description"])
 | ||
|     +row("foot")
 | ||
|         +cell yields
 | ||
|         +cell #[code.u-break ndarray[ndim=1, dtype='float32']]
 | ||
|         +cell A vector in the table.
 | ||
| 
 | ||
| +h(2, "items") Vectors.items
 | ||
|     +tag method
 | ||
| 
 | ||
| p Iterate over #[code (key, vector)] pairs, in order.
 | ||
| 
 | ||
| +aside-code("Example").
 | ||
|     for key, vector in nlp.vocab.vectors.items():
 | ||
|         print(key, nlp.vocab.strings[key], vector)
 | ||
| 
 | ||
| +table(["Name", "Type", "Description"])
 | ||
|     +row("foot")
 | ||
|         +cell yields
 | ||
|         +cell tuple
 | ||
|         +cell #[code (key, vector)] pairs, in order.
 | ||
| 
 | ||
| +h(2, "shape") Vectors.shape
 | ||
|     +tag property
 | ||
| 
 | ||
| p
 | ||
|     |  Get #[code (rows, dims)] tuples of number of rows and number of
 | ||
|     |  dimensions in the vector table.
 | ||
| 
 | ||
| +aside-code("Example").
 | ||
|     vectors = Vectors(shape(1, 300))
 | ||
|     vectors.add(u'cat', numpy.random.uniform(-1, 1, (300,)))
 | ||
|     rows, dims = vectors.shape
 | ||
|     assert rows == 1
 | ||
|     assert dims == 300
 | ||
| 
 | ||
| +table(["Name", "Type", "Description"])
 | ||
|     +row("foot")
 | ||
|         +cell returns
 | ||
|         +cell tuple
 | ||
|         +cell A #[code (rows, dims)] pair.
 | ||
| 
 | ||
| +h(2, "size") Vectors.size
 | ||
|     +tag property
 | ||
| 
 | ||
| p The vector size, i.e. #[code rows * dims].
 | ||
| 
 | ||
| +aside-code("Example").
 | ||
|     vectors = Vectors(shape=(500, 300))
 | ||
|     assert vectors.size == 150000
 | ||
| 
 | ||
| +table(["Name", "Type", "Description"])
 | ||
|     +row("foot")
 | ||
|         +cell returns
 | ||
|         +cell int
 | ||
|         +cell The vector size.
 | ||
| 
 | ||
| +h(2, "is_full") Vectors.is_full
 | ||
|     +tag property
 | ||
| 
 | ||
| p
 | ||
|     |  Whether the vectors table is full and has no slots are available for new
 | ||
|     |  keys. If a table is full, it can be resized using
 | ||
|     |  #[+api("vectors#resize") #[code Vectors.resize]].
 | ||
| 
 | ||
| +aside-code("Example").
 | ||
|     vectors = Vectors(shape=(1, 300))
 | ||
|     vectors.add(u'cat', numpy.random.uniform(-1, 1, (300,)))
 | ||
|     assert vectors.is_full
 | ||
| 
 | ||
| +table(["Name", "Type", "Description"])
 | ||
|     +row("foot")
 | ||
|         +cell returns
 | ||
|         +cell bool
 | ||
|         +cell Whether the vectors table is full.
 | ||
| 
 | ||
| +h(2, "n_keys") Vectors.n_keys
 | ||
|     +tag property
 | ||
| 
 | ||
| p
 | ||
|     |  Get the number of keys in the table. Note that this is the number of
 | ||
|     |  #[em all] keys, not just unique vectors. If several keys are mapped
 | ||
|     |  are mapped to the same vectors, they will be counted individually.
 | ||
| 
 | ||
| +aside-code("Example").
 | ||
|     vectors = Vectors(shape=(10, 300))
 | ||
|     assert len(vectors) == 10
 | ||
|     assert vectors.n_keys == 0
 | ||
| 
 | ||
| +table(["Name", "Type", "Description"])
 | ||
|     +row("foot")
 | ||
|         +cell returns
 | ||
|         +cell int
 | ||
|         +cell The number of all keys in the table.
 | ||
| 
 | ||
| +h(2, "from_glove") Vectors.from_glove
 | ||
|     +tag method
 | ||
| 
 | ||
| p
 | ||
|     |  Load #[+a("https://nlp.stanford.edu/projects/glove/") GloVe] vectors from
 | ||
|     |  a directory. Assumes binary format, that the vocab is in a
 | ||
|     |  #[code vocab.txt], and that vectors are named
 | ||
|     |  #[code vectors.{size}.[fd].bin], e.g. #[code vectors.128.f.bin] for 128d
 | ||
|     |  float32 vectors, #[code vectors.300.d.bin] for 300d float64 (double)
 | ||
|     |  vectors, etc. By default GloVe outputs 64-bit vectors.
 | ||
| 
 | ||
| +aside-code("Example").
 | ||
|     vectors = Vectors()
 | ||
|     vectors.from_glove('/path/to/glove_vectors')
 | ||
| 
 | ||
| +table(["Name", "Type", "Description"])
 | ||
|     +row
 | ||
|         +cell #[code path]
 | ||
|         +cell unicode / #[code Path]
 | ||
|         +cell The path to load the GloVe vectors from.
 | ||
| 
 | ||
| +h(2, "to_disk") Vectors.to_disk
 | ||
|     +tag method
 | ||
| 
 | ||
| p Save the current state to a directory.
 | ||
| 
 | ||
| +aside-code("Example").
 | ||
|     vectors.to_disk('/path/to/vectors')
 | ||
| 
 | ||
| +table(["Name", "Type", "Description"])
 | ||
|     +row
 | ||
|         +cell #[code path]
 | ||
|         +cell unicode / #[code Path]
 | ||
|         +cell
 | ||
|             |  A path to a directory, which will be created if it doesn't exist.
 | ||
|             |  Paths may be either strings or #[code Path]-like objects.
 | ||
| 
 | ||
|     +row
 | ||
|         +cell #[code **exclude]
 | ||
|         +cell -
 | ||
|         +cell Named attributes to prevent from being saved.
 | ||
| 
 | ||
| +h(2, "from_disk") Vectors.from_disk
 | ||
|     +tag method
 | ||
| 
 | ||
| p Loads state from a directory. Modifies the object in place and returns it.
 | ||
| 
 | ||
| +aside-code("Example").
 | ||
|     vectors = Vectors(StringStore())
 | ||
|     vectors.from_disk('/path/to/vectors')
 | ||
| 
 | ||
| +table(["Name", "Type", "Description"])
 | ||
|     +row
 | ||
|         +cell #[code path]
 | ||
|         +cell unicode / #[code Path]
 | ||
|         +cell
 | ||
|             |  A path to a directory. Paths may be either strings or
 | ||
|             |  #[code Path]-like objects.
 | ||
| 
 | ||
|     +row("foot")
 | ||
|         +cell returns
 | ||
|         +cell #[code Vectors]
 | ||
|         +cell The modified #[code Vectors] object.
 | ||
| 
 | ||
| +h(2, "to_bytes") Vectors.to_bytes
 | ||
|     +tag method
 | ||
| 
 | ||
| p Serialize the current state to a binary string.
 | ||
| 
 | ||
| +aside-code("Example").
 | ||
|     vectors_bytes = vectors.to_bytes()
 | ||
| 
 | ||
| +table(["Name", "Type", "Description"])
 | ||
|     +row
 | ||
|         +cell #[code **exclude]
 | ||
|         +cell -
 | ||
|         +cell Named attributes to prevent from being serialized.
 | ||
| 
 | ||
|     +row("foot")
 | ||
|         +cell returns
 | ||
|         +cell bytes
 | ||
|         +cell The serialized form of the #[code Vectors] object.
 | ||
| 
 | ||
| +h(2, "from_bytes") Vectors.from_bytes
 | ||
|     +tag method
 | ||
| 
 | ||
| p Load state from a binary string.
 | ||
| 
 | ||
| +aside-code("Example").
 | ||
|     fron spacy.vectors import Vectors
 | ||
|     vectors_bytes = vectors.to_bytes()
 | ||
|     new_vectors = Vectors(StringStore())
 | ||
|     new_vectors.from_bytes(vectors_bytes)
 | ||
| 
 | ||
| +table(["Name", "Type", "Description"])
 | ||
|     +row
 | ||
|         +cell #[code data]
 | ||
|         +cell bytes
 | ||
|         +cell The data to load from.
 | ||
| 
 | ||
|     +row
 | ||
|         +cell #[code **exclude]
 | ||
|         +cell -
 | ||
|         +cell Named attributes to prevent from being loaded.
 | ||
| 
 | ||
|     +row("foot")
 | ||
|         +cell returns
 | ||
|         +cell #[code Vectors]
 | ||
|         +cell The #[code Vectors] object.
 | ||
| 
 | ||
| +h(2, "attributes") Attributes
 | ||
| 
 | ||
| +table(["Name", "Type", "Description"])
 | ||
|     +row
 | ||
|         +cell #[code data]
 | ||
|         +cell #[code.u-break ndarray[ndim=1, dtype='float32']]
 | ||
|         +cell
 | ||
|             |  Stored vectors data. #[code numpy] is used for CPU vectors,
 | ||
|             |  #[code cupy] for GPU vectors.
 | ||
| 
 | ||
|     +row
 | ||
|         +cell #[code key2row]
 | ||
|         +cell dict
 | ||
|         +cell
 | ||
|             |  Dictionary mapping word hashes to rows in the
 | ||
|             |  #[code Vectors.data] table.
 | ||
| 
 | ||
|     +row
 | ||
|         +cell #[code keys]
 | ||
|         +cell #[code.u-break ndarray[ndim=1, dtype='float32']]
 | ||
|         +cell
 | ||
|             |  Array keeping the keys in order, such that
 | ||
|             |  #[code keys[vectors.key2row[key]] == key]
 |