spaCy/spacy/pipeline/spancat.py
2023-04-03 15:28:52 +02:00

758 lines
28 KiB
Python

from typing import List, Dict, Callable, Tuple, Optional, Iterable, Any, cast, Union
from dataclasses import dataclass
from functools import partial
from thinc.api import Config, Model, get_current_ops, set_dropout_rate, Ops
from thinc.api import Optimizer
from thinc.types import Ragged, Ints2d, Floats2d
import numpy
from ..compat import Protocol, runtime_checkable
from ..scorer import Scorer
from ..language import Language
from .trainable_pipe import TrainablePipe
from ..tokens import Doc, SpanGroup, Span
from ..vocab import Vocab
from ..training import Example, validate_examples
from ..errors import Errors
from ..util import registry
spancat_default_config = """
[model]
@architectures = "spacy.SpanCategorizer.v1"
scorer = {"@layers": "spacy.LinearLogistic.v1"}
[model.reducer]
@layers = spacy.mean_max_reducer.v1
hidden_size = 128
[model.tok2vec]
@architectures = "spacy.Tok2Vec.v2"
[model.tok2vec.embed]
@architectures = "spacy.MultiHashEmbed.v2"
width = 96
rows = [5000, 2000, 1000, 1000]
attrs = ["ORTH", "PREFIX", "SUFFIX", "SHAPE"]
include_static_vectors = false
[model.tok2vec.encode]
@architectures = "spacy.MaxoutWindowEncoder.v2"
width = ${model.tok2vec.embed.width}
window_size = 1
maxout_pieces = 3
depth = 4
"""
spancat_singlelabel_default_config = """
[model]
@architectures = "spacy.SpanCategorizer.v1"
scorer = {"@layers": "Softmax.v2"}
[model.reducer]
@layers = spacy.mean_max_reducer.v1
hidden_size = 128
[model.tok2vec]
@architectures = "spacy.Tok2Vec.v2"
[model.tok2vec.embed]
@architectures = "spacy.MultiHashEmbed.v1"
width = 96
rows = [5000, 1000, 2500, 1000]
attrs = ["NORM", "PREFIX", "SUFFIX", "SHAPE"]
include_static_vectors = false
[model.tok2vec.encode]
@architectures = "spacy.MaxoutWindowEncoder.v2"
width = ${model.tok2vec.embed.width}
window_size = 1
maxout_pieces = 3
depth = 4
"""
DEFAULT_SPANCAT_MODEL = Config().from_str(spancat_default_config)["model"]
DEFAULT_SPANCAT_SINGLELABEL_MODEL = Config().from_str(
spancat_singlelabel_default_config
)["model"]
@runtime_checkable
class Suggester(Protocol):
def __call__(self, docs: Iterable[Doc], *, ops: Optional[Ops] = None) -> Ragged:
...
def ngram_suggester(
docs: Iterable[Doc], sizes: List[int], *, ops: Optional[Ops] = None
) -> Ragged:
if ops is None:
ops = get_current_ops()
spans = []
lengths = []
for doc in docs:
starts = ops.xp.arange(len(doc), dtype="i")
starts = starts.reshape((-1, 1))
length = 0
for size in sizes:
if size <= len(doc):
starts_size = starts[: len(doc) - (size - 1)]
spans.append(ops.xp.hstack((starts_size, starts_size + size)))
length += spans[-1].shape[0]
if spans:
assert spans[-1].ndim == 2, spans[-1].shape
lengths.append(length)
lengths_array = ops.asarray1i(lengths)
if len(spans) > 0:
output = Ragged(ops.xp.vstack(spans), lengths_array)
else:
output = Ragged(ops.xp.zeros((0, 0), dtype="i"), lengths_array)
assert output.dataXd.ndim == 2
return output
@registry.misc("spacy.ngram_suggester.v1")
def build_ngram_suggester(sizes: List[int]) -> Suggester:
"""Suggest all spans of the given lengths. Spans are returned as a ragged
array of integers. The array has two columns, indicating the start and end
position."""
return partial(ngram_suggester, sizes=sizes)
@registry.misc("spacy.ngram_range_suggester.v1")
def build_ngram_range_suggester(min_size: int, max_size: int) -> Suggester:
"""Suggest all spans of the given lengths between a given min and max value - both inclusive.
Spans are returned as a ragged array of integers. The array has two columns,
indicating the start and end position."""
sizes = list(range(min_size, max_size + 1))
return build_ngram_suggester(sizes)
@Language.factory(
"spancat",
assigns=["doc.spans"],
default_config={
"threshold": 0.5,
"spans_key": "sc",
"max_positive": None,
"model": DEFAULT_SPANCAT_MODEL,
"suggester": {"@misc": "spacy.ngram_suggester.v1", "sizes": [1, 2, 3]},
"scorer": {"@scorers": "spacy.spancat_scorer.v1"},
},
default_score_weights={"spans_sc_f": 1.0, "spans_sc_p": 0.0, "spans_sc_r": 0.0},
)
def make_spancat(
nlp: Language,
name: str,
suggester: Suggester,
model: Model[Tuple[List[Doc], Ragged], Floats2d],
spans_key: str,
scorer: Optional[Callable],
threshold: float,
max_positive: Optional[int],
) -> "SpanCategorizer":
"""Create a SpanCategorizer component and configure it for multi-label
classification to be able to assign multiple labels for each span.
The span categorizer consists of two
parts: a suggester function that proposes candidate spans, and a labeller
model that predicts one or more labels for each span.
name (str): The component instance name, used to add entries to the
losses during training.
suggester (Callable[[Iterable[Doc], Optional[Ops]], Ragged]): A function that suggests spans.
Spans are returned as a ragged array with two integer columns, for the
start and end positions.
model (Model[Tuple[List[Doc], Ragged], Floats2d]): A model instance that
is given a list of documents and (start, end) indices representing
candidate span offsets. The model predicts a probability for each category
for each span.
spans_key (str): Key of the doc.spans dict to save the spans under. During
initialization and training, the component will look for spans on the
reference document under the same key.
scorer (Optional[Callable]): The scoring method. Defaults to
Scorer.score_spans for the Doc.spans[spans_key] with overlapping
spans allowed.
threshold (float): Minimum probability to consider a prediction positive.
Spans with a positive prediction will be saved on the Doc. Defaults to
0.5.
max_positive (Optional[int]): Maximum number of labels to consider positive
per span. Defaults to None, indicating no limit.
"""
return SpanCategorizer(
nlp.vocab,
model=model,
suggester=suggester,
name=name,
spans_key=spans_key,
negative_weight=None,
allow_overlap=True,
max_positive=max_positive,
threshold=threshold,
scorer=scorer,
add_negative_label=False,
)
@Language.factory(
"spancat_singlelabel",
assigns=["doc.spans"],
default_config={
"spans_key": "sc",
"model": DEFAULT_SPANCAT_SINGLELABEL_MODEL,
"negative_weight": 1.0,
"suggester": {"@misc": "spacy.ngram_suggester.v1", "sizes": [1, 2, 3]},
"scorer": {"@scorers": "spacy.spancat_scorer.v1"},
"allow_overlap": True,
},
default_score_weights={"spans_sc_f": 1.0, "spans_sc_p": 0.0, "spans_sc_r": 0.0},
)
def make_spancat_singlelabel(
nlp: Language,
name: str,
suggester: Suggester,
model: Model[Tuple[List[Doc], Ragged], Floats2d],
spans_key: str,
negative_weight: float,
allow_overlap: bool,
scorer: Optional[Callable],
) -> "SpanCategorizer":
"""Create a SpanCategorizer component and configure it for multi-class
classification. With this configuration each span can get at most one
label. The span categorizer consists of two
parts: a suggester function that proposes candidate spans, and a labeller
model that predicts one or more labels for each span.
name (str): The component instance name, used to add entries to the
losses during training.
suggester (Callable[[Iterable[Doc], Optional[Ops]], Ragged]): A function that suggests spans.
Spans are returned as a ragged array with two integer columns, for the
start and end positions.
model (Model[Tuple[List[Doc], Ragged], Floats2d]): A model instance that
is given a list of documents and (start, end) indices representing
candidate span offsets. The model predicts a probability for each category
for each span.
spans_key (str): Key of the doc.spans dict to save the spans under. During
initialization and training, the component will look for spans on the
reference document under the same key.
scorer (Optional[Callable]): The scoring method. Defaults to
Scorer.score_spans for the Doc.spans[spans_key] with overlapping
spans allowed.
negative_weight (float): Multiplier for the loss terms.
Can be used to downweight the negative samples if there are too many.
allow_overlap (bool): If True the data is assumed to contain overlapping spans.
Otherwise it produces non-overlapping spans greedily prioritizing
higher assigned label scores.
"""
return SpanCategorizer(
nlp.vocab,
model=model,
suggester=suggester,
name=name,
spans_key=spans_key,
negative_weight=negative_weight,
allow_overlap=allow_overlap,
max_positive=1,
add_negative_label=True,
threshold=None,
scorer=scorer,
)
def spancat_score(examples: Iterable[Example], **kwargs) -> Dict[str, Any]:
kwargs = dict(kwargs)
attr_prefix = "spans_"
key = kwargs["spans_key"]
kwargs.setdefault("attr", f"{attr_prefix}{key}")
kwargs.setdefault("allow_overlap", True)
kwargs.setdefault(
"getter", lambda doc, key: doc.spans.get(key[len(attr_prefix) :], [])
)
kwargs.setdefault("has_annotation", lambda doc: key in doc.spans)
return Scorer.score_spans(examples, **kwargs)
@registry.scorers("spacy.spancat_scorer.v1")
def make_spancat_scorer():
return spancat_score
@dataclass
class _Intervals:
"""
Helper class to avoid storing overlapping spans.
"""
def __init__(self):
self.ranges = set()
def add(self, i, j):
for e in range(i, j):
self.ranges.add(e)
def __contains__(self, rang):
i, j = rang
for e in range(i, j):
if e in self.ranges:
return True
return False
class SpanCategorizer(TrainablePipe):
"""Pipeline component to label spans of text.
DOCS: https://spacy.io/api/spancategorizer
"""
def __init__(
self,
vocab: Vocab,
model: Model[Tuple[List[Doc], Ragged], Floats2d],
suggester: Suggester,
name: str = "spancat",
*,
add_negative_label: bool = False,
spans_key: str = "spans",
negative_weight: Optional[float] = 1.0,
allow_overlap: Optional[bool] = True,
max_positive: Optional[int] = None,
threshold: Optional[float] = 0.5,
scorer: Optional[Callable] = spancat_score,
) -> None:
"""Initialize the multi-label or multi-class span categorizer.
vocab (Vocab): The shared vocabulary.
model (thinc.api.Model): The Thinc Model powering the pipeline component.
For multi-class classification (single label per span) we recommend
using a Softmax classifier as a the final layer, while for multi-label
classification (multiple possible labels per span) we recommend Logistic.
suggester (Callable[[Iterable[Doc], Optional[Ops]], Ragged]): A function that suggests spans.
Spans are returned as a ragged array with two integer columns, for the
start and end positions.
name (str): The component instance name, used to add entries to the
losses during training.
spans_key (str): Key of the Doc.spans dict to save the spans under.
During initialization and training, the component will look for
spans on the reference document under the same key. Defaults to
`"spans"`.
add_negative_label (bool): Learn to predict a special 'negative_label'
when a Span is not annotated.
threshold (Optional[float]): Minimum probability to consider a prediction
positive. Defaults to 0.5. Spans with a positive prediction will be saved
on the Doc.
max_positive (Optional[int]): Maximum number of labels to consider
positive per span. Defaults to None, indicating no limit.
negative_weight (float): Multiplier for the loss terms.
Can be used to downweight the negative samples if there are too many
when add_negative_label is True. Otherwise its unused.
allow_overlap (bool): If True the data is assumed to contain overlapping spans.
Otherwise it produces non-overlapping spans greedily prioritizing
higher assigned label scores. Only used when max_positive is 1.
scorer (Optional[Callable]): The scoring method. Defaults to
Scorer.score_spans for the Doc.spans[spans_key] with overlapping
spans allowed.
DOCS: https://spacy.io/api/spancategorizer#init
"""
self.cfg = {
"labels": [],
"spans_key": spans_key,
"threshold": threshold,
"max_positive": max_positive,
"negative_weight": negative_weight,
"allow_overlap": allow_overlap,
}
self.vocab = vocab
self.suggester = suggester
self.model = model
self.name = name
self.scorer = scorer
self.add_negative_label = add_negative_label
if not allow_overlap and max_positive is not None and max_positive > 1:
raise ValueError(Errors.E1051.format(max_positive=max_positive))
@property
def key(self) -> str:
"""Key of the doc.spans dict to save the spans under. During
initialization and training, the component will look for spans on the
reference document under the same key.
"""
return str(self.cfg["spans_key"])
def _allow_extra_label(self) -> None:
"""Raise an error if the component can not add any more labels."""
nO = None
if self.model.has_dim("nO"):
nO = self.model.get_dim("nO")
elif self.model.has_ref("output_layer") and self.model.get_ref(
"output_layer"
).has_dim("nO"):
nO = self.model.get_ref("output_layer").get_dim("nO")
if nO is not None and nO == self._n_labels:
if not self.is_resizable:
raise ValueError(
Errors.E922.format(name=self.name, nO=self.model.get_dim("nO"))
)
def add_label(self, label: str) -> int:
"""Add a new label to the pipe.
label (str): The label to add.
RETURNS (int): 0 if label is already present, otherwise 1.
DOCS: https://spacy.io/api/spancategorizer#add_label
"""
if not isinstance(label, str):
raise ValueError(Errors.E187)
if label in self.labels:
return 0
self._allow_extra_label()
self.cfg["labels"].append(label) # type: ignore
self.vocab.strings.add(label)
return 1
@property
def labels(self) -> Tuple[str]:
"""RETURNS (Tuple[str]): The labels currently added to the component.
DOCS: https://spacy.io/api/spancategorizer#labels
"""
return tuple(self.cfg["labels"]) # type: ignore
@property
def label_data(self) -> List[str]:
"""RETURNS (List[str]): Information about the component's labels.
DOCS: https://spacy.io/api/spancategorizer#label_data
"""
return list(self.labels)
@property
def _label_map(self) -> Dict[str, int]:
"""RETURNS (Dict[str, int]): The label map."""
return {label: i for i, label in enumerate(self.labels)}
@property
def _n_labels(self) -> int:
"""RETURNS (int): Number of labels."""
if self.add_negative_label:
return len(self.labels) + 1
else:
return len(self.labels)
@property
def _negative_label_i(self) -> Union[int, None]:
"""RETURNS (Union[int, None]): Index of the negative label."""
if self.add_negative_label:
return len(self.label_data)
else:
return None
def predict(self, docs: Iterable[Doc]):
"""Apply the pipeline's model to a batch of docs, without modifying them.
docs (Iterable[Doc]): The documents to predict.
RETURNS: The models prediction for each document.
DOCS: https://spacy.io/api/spancategorizer#predict
"""
indices = self.suggester(docs, ops=self.model.ops)
if indices.lengths.sum() == 0:
scores = self.model.ops.alloc2f(0, 0)
else:
scores = self.model.predict((docs, indices)) # type: ignore
return indices, scores
def set_candidates(
self, docs: Iterable[Doc], *, candidates_key: str = "candidates"
) -> None:
"""Use the spancat suggester to add a list of span candidates to a list of docs.
This method is intended to be used for debugging purposes.
docs (Iterable[Doc]): The documents to modify.
candidates_key (str): Key of the Doc.spans dict to save the candidate spans under.
DOCS: https://spacy.io/api/spancategorizer#set_candidates
"""
suggester_output = self.suggester(docs, ops=self.model.ops)
for candidates, doc in zip(suggester_output, docs): # type: ignore
doc.spans[candidates_key] = []
for index in candidates.dataXd:
doc.spans[candidates_key].append(doc[index[0] : index[1]])
def set_annotations(self, docs: Iterable[Doc], indices_scores) -> None:
"""Modify a batch of Doc objects, using pre-computed scores.
docs (Iterable[Doc]): The documents to modify.
scores: The scores to set, produced by SpanCategorizer.predict.
DOCS: https://spacy.io/api/spancategorizer#set_annotations
"""
indices, scores = indices_scores
offset = 0
for i, doc in enumerate(docs):
indices_i = indices[i].dataXd
allow_overlap = cast(bool, self.cfg["allow_overlap"])
if self.cfg["max_positive"] == 1:
doc.spans[self.key] = self._make_span_group_singlelabel(
doc,
indices_i,
scores[offset : offset + indices.lengths[i]],
allow_overlap,
)
else:
doc.spans[self.key] = self._make_span_group_multilabel(
doc,
indices_i,
scores[offset : offset + indices.lengths[i]],
)
offset += indices.lengths[i]
def update(
self,
examples: Iterable[Example],
*,
drop: float = 0.0,
sgd: Optional[Optimizer] = None,
losses: Optional[Dict[str, float]] = None,
) -> Dict[str, float]:
"""Learn from a batch of documents and gold-standard information,
updating the pipe's model. Delegates to predict and get_loss.
examples (Iterable[Example]): A batch of Example objects.
drop (float): The dropout rate.
sgd (thinc.api.Optimizer): The optimizer.
losses (Dict[str, float]): Optional record of the loss during training.
Updated using the component name as the key.
RETURNS (Dict[str, float]): The updated losses dictionary.
DOCS: https://spacy.io/api/spancategorizer#update
"""
if losses is None:
losses = {}
losses.setdefault(self.name, 0.0)
validate_examples(examples, "SpanCategorizer.update")
self._validate_categories(examples)
if not any(len(eg.predicted) if eg.predicted else 0 for eg in examples):
# Handle cases where there are no tokens in any docs.
return losses
docs = [eg.predicted for eg in examples]
spans = self.suggester(docs, ops=self.model.ops)
if spans.lengths.sum() == 0:
return losses
set_dropout_rate(self.model, drop)
scores, backprop_scores = self.model.begin_update((docs, spans))
loss, d_scores = self.get_loss(examples, (spans, scores))
backprop_scores(d_scores) # type: ignore
if sgd is not None:
self.finish_update(sgd)
losses[self.name] += loss
return losses
def get_loss(
self, examples: Iterable[Example], spans_scores: Tuple[Ragged, Floats2d]
) -> Tuple[float, float]:
"""Find the loss and gradient of loss for the batch of documents and
their predicted scores.
examples (Iterable[Examples]): The batch of examples.
spans_scores: Scores representing the model's predictions.
RETURNS (Tuple[float, float]): The loss and the gradient.
DOCS: https://spacy.io/api/spancategorizer#get_loss
"""
spans, scores = spans_scores
spans = Ragged(
self.model.ops.to_numpy(spans.data), self.model.ops.to_numpy(spans.lengths)
)
target = numpy.zeros(scores.shape, dtype=scores.dtype)
if self.add_negative_label:
negative_spans = numpy.ones((scores.shape[0]))
offset = 0
label_map = self._label_map
for i, eg in enumerate(examples):
# Map (start, end) offset of spans to the row in the d_scores array,
# so that we can adjust the gradient for predictions that were
# in the gold standard.
spans_index = {}
spans_i = spans[i].dataXd
for j in range(spans.lengths[i]):
start = int(spans_i[j, 0]) # type: ignore
end = int(spans_i[j, 1]) # type: ignore
spans_index[(start, end)] = offset + j
for gold_span in self._get_aligned_spans(eg):
key = (gold_span.start, gold_span.end)
if key in spans_index:
row = spans_index[key]
k = label_map[gold_span.label_]
target[row, k] = 1.0
if self.add_negative_label:
# delete negative label target.
negative_spans[row] = 0.0
# The target is a flat array for all docs. Track the position
# we're at within the flat array.
offset += spans.lengths[i]
target = self.model.ops.asarray(target, dtype="f") # type: ignore
if self.add_negative_label:
negative_samples = numpy.nonzero(negative_spans)[0]
target[negative_samples, self._negative_label_i] = 1.0 # type: ignore
# The target will have the values 0 (for untrue predictions) or 1
# (for true predictions).
# The scores should be in the range [0, 1].
# If the prediction is 0.9 and it's true, the gradient
# will be -0.1 (0.9 - 1.0).
# If the prediction is 0.9 and it's false, the gradient will be
# 0.9 (0.9 - 0.0)
d_scores = scores - target
if self.add_negative_label:
neg_weight = cast(float, self.cfg["negative_weight"])
if neg_weight != 1.0:
d_scores[negative_samples] *= neg_weight
loss = float((d_scores**2).sum())
return loss, d_scores
def initialize(
self,
get_examples: Callable[[], Iterable[Example]],
*,
nlp: Optional[Language] = None,
labels: Optional[List[str]] = None,
) -> None:
"""Initialize the pipe for training, using a representative set
of data examples.
get_examples (Callable[[], Iterable[Example]]): Function that
returns a representative sample of gold-standard Example objects.
nlp (Optional[Language]): The current nlp object the component is part of.
labels (Optional[List[str]]): The labels to add to the component, typically generated by the
`init labels` command. If no labels are provided, the get_examples
callback is used to extract the labels from the data.
DOCS: https://spacy.io/api/spancategorizer#initialize
"""
subbatch: List[Example] = []
if labels is not None:
for label in labels:
self.add_label(label)
for eg in get_examples():
if labels is None:
for span in eg.reference.spans.get(self.key, []):
self.add_label(span.label_)
if len(subbatch) < 10:
subbatch.append(eg)
self._require_labels()
if subbatch:
docs = [eg.x for eg in subbatch]
spans = build_ngram_suggester(sizes=[1])(docs)
Y = self.model.ops.alloc2f(spans.dataXd.shape[0], self._n_labels)
self.model.initialize(X=(docs, spans), Y=Y)
else:
self.model.initialize()
def _validate_categories(self, examples: Iterable[Example]):
# TODO
pass
def _get_aligned_spans(self, eg: Example):
return eg.get_aligned_spans_y2x(
eg.reference.spans.get(self.key, []), allow_overlap=True
)
def _make_span_group_multilabel(
self,
doc: Doc,
indices: Ints2d,
scores: Floats2d,
) -> SpanGroup:
"""Find the top-k labels for each span (k=max_positive)."""
spans = SpanGroup(doc, name=self.key)
if scores.size == 0:
return spans
scores = self.model.ops.to_numpy(scores)
indices = self.model.ops.to_numpy(indices)
threshold = self.cfg["threshold"]
max_positive = self.cfg["max_positive"]
keeps = scores >= threshold
if max_positive is not None:
assert isinstance(max_positive, int)
if self.add_negative_label:
negative_scores = numpy.copy(scores[:, self._negative_label_i])
scores[:, self._negative_label_i] = -numpy.inf
ranked = (scores * -1).argsort() # type: ignore
scores[:, self._negative_label_i] = negative_scores
else:
ranked = (scores * -1).argsort() # type: ignore
span_filter = ranked[:, max_positive:]
for i, row in enumerate(span_filter):
keeps[i, row] = False
attrs_scores = []
for i in range(indices.shape[0]):
start = indices[i, 0]
end = indices[i, 1]
for j, keep in enumerate(keeps[i]):
if keep:
if j != self._negative_label_i:
spans.append(Span(doc, start, end, label=self.labels[j]))
attrs_scores.append(scores[i, j])
spans.attrs["scores"] = numpy.array(attrs_scores)
return spans
def _make_span_group_singlelabel(
self,
doc: Doc,
indices: Ints2d,
scores: Floats2d,
allow_overlap: bool = True,
) -> SpanGroup:
"""Find the argmax label for each span."""
# Handle cases when there are zero suggestions
if scores.size == 0:
return SpanGroup(doc, name=self.key)
scores = self.model.ops.to_numpy(scores)
indices = self.model.ops.to_numpy(indices)
predicted = scores.argmax(axis=1)
argmax_scores = numpy.take_along_axis(
scores, numpy.expand_dims(predicted, 1), axis=1
)
keeps = numpy.ones(predicted.shape, dtype=bool)
# Remove samples where the negative label is the argmax.
if self.add_negative_label:
keeps = numpy.logical_and(keeps, predicted != self._negative_label_i)
# Filter samples according to threshold.
threshold = self.cfg["threshold"]
if threshold is not None:
keeps = numpy.logical_and(keeps, (argmax_scores >= threshold).squeeze())
# Sort spans according to argmax probability
if not allow_overlap:
# Get the probabilities
sort_idx = (argmax_scores.squeeze() * -1).argsort()
argmax_scores = argmax_scores[sort_idx]
predicted = predicted[sort_idx]
indices = indices[sort_idx]
keeps = keeps[sort_idx]
seen = _Intervals()
spans = SpanGroup(doc, name=self.key)
attrs_scores = []
for i in range(indices.shape[0]):
if not keeps[i]:
continue
label = predicted[i]
start = indices[i, 0]
end = indices[i, 1]
if not allow_overlap:
if (start, end) in seen:
continue
else:
seen.add(start, end)
attrs_scores.append(argmax_scores[i])
spans.append(Span(doc, start, end, label=self.labels[label]))
spans.attrs["scores"] = numpy.array(attrs_scores)
return spans