mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 09:57:26 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			566 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
			
		
		
	
	
			566 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
//- 💫 DOCS > API > DOC
 | 
						||
 | 
						||
include ../../_includes/_mixins
 | 
						||
 | 
						||
p A container for accessing linguistic annotations.
 | 
						||
 | 
						||
p
 | 
						||
    |  A #[code Doc] is a sequence of #[+api("token") #[code Token]] objects.
 | 
						||
    |  Access sentences and named entities, export annotations to numpy arrays,
 | 
						||
    |  losslessly serialize to compressed binary strings. The #[code Doc] object
 | 
						||
    |  holds an array of #[code TokenC] structs. The Python-level #[code Token]
 | 
						||
    |  and #[+api("span") #[code Span]] objects are views of this array, i.e.
 | 
						||
    |  they don't own the data themselves.
 | 
						||
 | 
						||
+aside-code("Example").
 | 
						||
    # Construction 1
 | 
						||
    doc = nlp(u'Some text')
 | 
						||
 | 
						||
    # Construction 2
 | 
						||
    from spacy.tokens import Doc
 | 
						||
    doc = doc = Doc(nlp.vocab, words=[u'hello', u'world', u'!'],
 | 
						||
                               spaces=[True, False, False])
 | 
						||
 | 
						||
+h(2, "init") Doc.__init__
 | 
						||
    +tag method
 | 
						||
 | 
						||
p
 | 
						||
    |  Construct a #[code Doc] object. The most common way to get a #[code Doc]
 | 
						||
    |  object is via the #[code nlp] object.
 | 
						||
 | 
						||
+table(["Name", "Type", "Description"])
 | 
						||
    +row
 | 
						||
        +cell #[code vocab]
 | 
						||
        +cell #[code Vocab]
 | 
						||
        +cell A storage container for lexical types.
 | 
						||
 | 
						||
    +row
 | 
						||
        +cell #[code words]
 | 
						||
        +cell -
 | 
						||
        +cell A list of strings to add to the container.
 | 
						||
 | 
						||
    +row
 | 
						||
        +cell #[code spaces]
 | 
						||
        +cell -
 | 
						||
        +cell
 | 
						||
            |  A list of boolean values indicating whether each word has a
 | 
						||
            |  subsequent space. Must have the same length as #[code words], if
 | 
						||
            |  specified. Defaults to a sequence of #[code True].
 | 
						||
 | 
						||
    +footrow
 | 
						||
        +cell returns
 | 
						||
        +cell #[code Doc]
 | 
						||
        +cell The newly constructed object.
 | 
						||
 | 
						||
+h(2, "getitem") Doc.__getitem__
 | 
						||
    +tag method
 | 
						||
 | 
						||
p
 | 
						||
    |  Get a #[+api("token") #[code Token]] object at position #[code i], where
 | 
						||
    |  #[code i] is an integer. Negative indexing is supported, and follows the
 | 
						||
    |  usual Python semantics, i.e. #[code doc[-2]] is #[code doc[len(doc) - 2]].
 | 
						||
 | 
						||
+aside-code("Example").
 | 
						||
    doc = nlp(u'Give it back! He pleaded.')
 | 
						||
    assert doc[0].text == 'Give'
 | 
						||
    assert doc[-1].text == '.'
 | 
						||
    span = doc[1:1]
 | 
						||
    assert span.text == 'it back'
 | 
						||
 | 
						||
+table(["Name", "Type", "Description"])
 | 
						||
    +row
 | 
						||
        +cell #[code i]
 | 
						||
        +cell int
 | 
						||
        +cell The index of the token.
 | 
						||
 | 
						||
    +footrow
 | 
						||
        +cell returns
 | 
						||
        +cell #[code Token]
 | 
						||
        +cell The token at #[code doc[i]].
 | 
						||
 | 
						||
p
 | 
						||
    |  Get a #[+api("span") #[code Span]] object, starting at position
 | 
						||
    |  #[code start] (token index) and ending at position #[code end] (token
 | 
						||
    |  index).
 | 
						||
 | 
						||
p
 | 
						||
    |  For instance, #[code doc[2:5]] produces a span consisting of tokens 2, 3
 | 
						||
    |  and 4. Stepped slices (e.g. #[code doc[start : end : step]]) are not
 | 
						||
    |  supported, as #[code Span] objects must be contiguous (cannot have gaps).
 | 
						||
    |  You can use negative indices and open-ended ranges, which have their
 | 
						||
    |  normal Python semantics.
 | 
						||
 | 
						||
+table(["Name", "Type", "Description"])
 | 
						||
    +row
 | 
						||
        +cell #[code start_end]
 | 
						||
        +cell tuple
 | 
						||
        +cell The slice of the document to get.
 | 
						||
 | 
						||
    +footrow
 | 
						||
        +cell returns
 | 
						||
        +cell #[code Span]
 | 
						||
        +cell The span at #[code doc[start : end]].
 | 
						||
 | 
						||
+h(2, "iter") Doc.__iter__
 | 
						||
    +tag method
 | 
						||
 | 
						||
p
 | 
						||
    |  Iterate over #[code Token] objects, from which the annotations can be
 | 
						||
    |  easily accessed.
 | 
						||
 | 
						||
+aside-code("Example").
 | 
						||
    doc = nlp(u'Give it back')
 | 
						||
    assert [t.text for t in doc] == [u'Give', u'it', u'back']
 | 
						||
 | 
						||
p
 | 
						||
    |  This is the main way of accessing #[+api("token") #[code Token]] objects,
 | 
						||
    |  which are the main way annotations are accessed from Python. If
 | 
						||
    |  faster-than-Python speeds are required, you can instead access the
 | 
						||
    |  annotations as a numpy array, or access the underlying C data directly
 | 
						||
    |  from Cython.
 | 
						||
 | 
						||
+table(["Name", "Type", "Description"])
 | 
						||
    +footrow
 | 
						||
        +cell yields
 | 
						||
        +cell #[code Token]
 | 
						||
        +cell A #[code Token] object.
 | 
						||
 | 
						||
+h(2, "len") Doc.__len__
 | 
						||
    +tag method
 | 
						||
 | 
						||
p Get the number of tokens in the document.
 | 
						||
 | 
						||
+aside-code("Example").
 | 
						||
    doc = nlp(u'Give it back! He pleaded.')
 | 
						||
    assert len(doc) == 7
 | 
						||
 | 
						||
+table(["Name", "Type", "Description"])
 | 
						||
    +footrow
 | 
						||
        +cell returns
 | 
						||
        +cell int
 | 
						||
        +cell The number of tokens in the document.
 | 
						||
 | 
						||
+h(2, "similarity") Doc.similarity
 | 
						||
    +tag method
 | 
						||
    +tag-model("vectors")
 | 
						||
 | 
						||
p
 | 
						||
    |  Make a semantic similarity estimate. The default estimate is cosine
 | 
						||
    |  similarity using an average of word vectors.
 | 
						||
 | 
						||
+aside-code("Example").
 | 
						||
    apples = nlp(u'I like apples')
 | 
						||
    oranges = nlp(u'I like oranges')
 | 
						||
    apples_oranges = apples.similarity(oranges)
 | 
						||
    oranges_apples = oranges.similarity(apples)
 | 
						||
    assert apples_oranges == oranges_apples
 | 
						||
 | 
						||
+table(["Name", "Type", "Description"])
 | 
						||
    +row
 | 
						||
        +cell #[code other]
 | 
						||
        +cell -
 | 
						||
        +cell
 | 
						||
            |  The object to compare with. By default, accepts #[code Doc],
 | 
						||
            |  #[code Span], #[code Token] and #[code Lexeme] objects.
 | 
						||
 | 
						||
    +footrow
 | 
						||
        +cell returns
 | 
						||
        +cell float
 | 
						||
        +cell A scalar similarity score. Higher is more similar.
 | 
						||
 | 
						||
+h(2, "count_by") Doc.count_by
 | 
						||
    +tag method
 | 
						||
 | 
						||
p
 | 
						||
    |  Count the frequencies of a given attribute. Produces a dict of
 | 
						||
    |  #[code {attr (int): count (ints)}] frequencies, keyed by the values
 | 
						||
    |  of the given attribute ID.
 | 
						||
 | 
						||
+aside-code("Example").
 | 
						||
    from spacy.attrs import ORTH
 | 
						||
    doc = nlp(u'apple apple orange banana')
 | 
						||
    assert doc.count_by(ORTH) == {7024L: 1, 119552L: 1, 2087L: 2}
 | 
						||
    doc.to_array([attrs.ORTH])
 | 
						||
    # array([[11880], [11880], [7561], [12800]])
 | 
						||
 | 
						||
+table(["Name", "Type", "Description"])
 | 
						||
    +row
 | 
						||
        +cell #[code attr_id]
 | 
						||
        +cell int
 | 
						||
        +cell The attribute ID
 | 
						||
 | 
						||
    +footrow
 | 
						||
        +cell returns
 | 
						||
        +cell dict
 | 
						||
        +cell A dictionary mapping attributes to integer counts.
 | 
						||
 | 
						||
+h(2, "to_array") Doc.to_array
 | 
						||
    +tag method
 | 
						||
 | 
						||
p
 | 
						||
    |  Export the document annotations to a numpy array of shape #[code N*M]
 | 
						||
    |  where #[code N] is the length of the document and #[code M] is the number
 | 
						||
    |  of attribute IDs to export. The values will be 32-bit integers.
 | 
						||
 | 
						||
+aside-code("Example").
 | 
						||
    from spacy.attrs import LOWER, POS, ENT_TYPE, IS_ALPHA
 | 
						||
    doc = nlp(text)
 | 
						||
    # All strings mapped to integers, for easy export to numpy
 | 
						||
    np_array = doc.to_array([LOWER, POS, ENT_TYPE, IS_ALPHA])
 | 
						||
 | 
						||
+table(["Name", "Type", "Description"])
 | 
						||
    +row
 | 
						||
        +cell #[code attr_ids]
 | 
						||
        +cell ints
 | 
						||
        +cell A list of attribute ID ints.
 | 
						||
 | 
						||
    +footrow
 | 
						||
        +cell returns
 | 
						||
        +cell #[code numpy.ndarray[ndim=2, dtype='int32']]
 | 
						||
        +cell
 | 
						||
            |  The exported attributes as a 2D numpy array, with one row per
 | 
						||
            |  token and one column per attribute.
 | 
						||
 | 
						||
+h(2, "from_array") Doc.from_array
 | 
						||
    +tag method
 | 
						||
 | 
						||
p
 | 
						||
    |  Load attributes from a numpy array. Write to a #[code Doc] object, from
 | 
						||
    |  an #[code (M, N)] array of attributes.
 | 
						||
 | 
						||
+aside-code("Example").
 | 
						||
    from spacy.attrs import LOWER, POS, ENT_TYPE, IS_ALPHA
 | 
						||
    from spacy.tokens import Doc
 | 
						||
    doc = nlp(text)
 | 
						||
    np_array = doc.to_array([LOWER, POS, ENT_TYPE, IS_ALPHA])
 | 
						||
    doc2 = Doc(doc.vocab)
 | 
						||
    doc2.from_array([LOWER, POS, ENT_TYPE, IS_ALPHA], np_array)
 | 
						||
    assert doc.text == doc2.text
 | 
						||
 | 
						||
+table(["Name", "Type", "Description"])
 | 
						||
    +row
 | 
						||
        +cell #[code attrs]
 | 
						||
        +cell ints
 | 
						||
        +cell A list of attribute ID ints.
 | 
						||
 | 
						||
    +row
 | 
						||
        +cell #[code array]
 | 
						||
        +cell #[code numpy.ndarray[ndim=2, dtype='int32']]
 | 
						||
        +cell The attribute values to load.
 | 
						||
 | 
						||
    +footrow
 | 
						||
        +cell returns
 | 
						||
        +cell #[code Doc]
 | 
						||
        +cell Itself.
 | 
						||
 | 
						||
+h(2, "to_bytes") Doc.to_bytes
 | 
						||
    +tag method
 | 
						||
 | 
						||
p Serialize, i.e. export the document contents to a binary string.
 | 
						||
 | 
						||
+aside-code("Example").
 | 
						||
    doc = nlp(u'Give it back! He pleaded.')
 | 
						||
    doc_bytes = doc.to_bytes()
 | 
						||
 | 
						||
+table(["Name", "Type", "Description"])
 | 
						||
    +footrow
 | 
						||
        +cell returns
 | 
						||
        +cell bytes
 | 
						||
        +cell
 | 
						||
            |  A losslessly serialized copy of the #[code Doc], including all
 | 
						||
            |  annotations.
 | 
						||
 | 
						||
+h(2, "from_bytes") Doc.from_bytes
 | 
						||
    +tag method
 | 
						||
 | 
						||
p Deserialize, i.e. import the document contents from a binary string.
 | 
						||
 | 
						||
+aside-code("Example").
 | 
						||
    from spacy.tokens import Doc
 | 
						||
    text = u'Give it back! He pleaded.'
 | 
						||
    doc = nlp(text)
 | 
						||
    bytes = doc.to_bytes()
 | 
						||
    doc2 = Doc(doc.vocab).from_bytes(bytes)
 | 
						||
    assert doc.text == doc2.text
 | 
						||
 | 
						||
+table(["Name", "Type", "Description"])
 | 
						||
    +row
 | 
						||
        +cell #[code data]
 | 
						||
        +cell bytes
 | 
						||
        +cell The string to load from.
 | 
						||
 | 
						||
    +footrow
 | 
						||
        +cell returns
 | 
						||
        +cell #[code Doc]
 | 
						||
        +cell The #[code Doc] object.
 | 
						||
 | 
						||
+h(2, "merge") Doc.merge
 | 
						||
    +tag method
 | 
						||
 | 
						||
p
 | 
						||
    |  Retokenize the document, such that the span at
 | 
						||
    |  #[code doc.text[start_idx : end_idx]] is merged into a single token. If
 | 
						||
    |  #[code start_idx] and #[end_idx] do not mark start and end token
 | 
						||
    |  boundaries, the document remains unchanged.
 | 
						||
 | 
						||
+aside-code("Example").
 | 
						||
    doc = nlp(u'Los Angeles start.')
 | 
						||
    doc.merge(0, len('Los Angeles'), 'NNP', 'Los Angeles', 'GPE')
 | 
						||
    assert [t.text for t in doc] == [u'Los Angeles', u'start', u'.']
 | 
						||
 | 
						||
+table(["Name", "Type", "Description"])
 | 
						||
    +row
 | 
						||
        +cell #[code start_idx]
 | 
						||
        +cell int
 | 
						||
        +cell The character index of the start of the slice to merge.
 | 
						||
 | 
						||
    +row
 | 
						||
        +cell #[code end_idx]
 | 
						||
        +cell int
 | 
						||
        +cell The character index after the end of the slice to merge.
 | 
						||
 | 
						||
    +row
 | 
						||
        +cell #[code **attributes]
 | 
						||
        +cell -
 | 
						||
        +cell
 | 
						||
            |  Attributes to assign to the merged token. By default,
 | 
						||
            |  attributes are inherited from the syntactic root token of
 | 
						||
            |  the span.
 | 
						||
 | 
						||
    +footrow
 | 
						||
        +cell returns
 | 
						||
        +cell #[code Token]
 | 
						||
        +cell
 | 
						||
            |  The newly merged token, or #[code None] if the start and end
 | 
						||
            |  indices did not fall at token boundaries
 | 
						||
 | 
						||
+h(2, "print_tree") Doc.print_tree
 | 
						||
    +tag method
 | 
						||
    +tag-model("parse")
 | 
						||
 | 
						||
p
 | 
						||
    |  Returns the parse trees in JSON (dict) format. Especially useful for
 | 
						||
    |  web applications.
 | 
						||
 | 
						||
+aside-code("Example").
 | 
						||
    doc = nlp('Alice ate the pizza.')
 | 
						||
    trees = doc.print_tree()
 | 
						||
    # {'modifiers': [
 | 
						||
    #   {'modifiers': [], 'NE': 'PERSON', 'word': 'Alice', 'arc': 'nsubj', 'POS_coarse': 'PROPN', 'POS_fine': 'NNP', 'lemma': 'Alice'},
 | 
						||
    #   {'modifiers': [{'modifiers': [], 'NE': '', 'word': 'the', 'arc': 'det', 'POS_coarse': 'DET', 'POS_fine': 'DT', 'lemma': 'the'}], 'NE': '', 'word': 'pizza', 'arc': 'dobj', 'POS_coarse': 'NOUN', 'POS_fine': 'NN', 'lemma': 'pizza'},
 | 
						||
    #   {'modifiers': [], 'NE': '', 'word': '.', 'arc': 'punct', 'POS_coarse': 'PUNCT', 'POS_fine': '.', 'lemma': '.'}
 | 
						||
    # ], 'NE': '', 'word': 'ate', 'arc': 'ROOT', 'POS_coarse': 'VERB', 'POS_fine': 'VBD', 'lemma': 'eat'}
 | 
						||
 | 
						||
+table(["Name", "Type", "Description"])
 | 
						||
    +row
 | 
						||
        +cell #[code light]
 | 
						||
        +cell bool
 | 
						||
        +cell Don't include lemmas or entities.
 | 
						||
 | 
						||
    +row
 | 
						||
        +cell #[code flat]
 | 
						||
        +cell bool
 | 
						||
        +cell Don't include arcs or modifiers.
 | 
						||
 | 
						||
    +footrow
 | 
						||
        +cell returns
 | 
						||
        +cell dict
 | 
						||
        +cell Parse tree as dict.
 | 
						||
 | 
						||
+h(2, "ents") Doc.ents
 | 
						||
    +tag property
 | 
						||
    +tag-model("NER")
 | 
						||
 | 
						||
p
 | 
						||
    |  Iterate over the entities in the document. Yields named-entity
 | 
						||
    |  #[code Span] objects, if the entity recognizer has been applied to the
 | 
						||
    |  document.
 | 
						||
 | 
						||
+aside-code("Example").
 | 
						||
    tokens = nlp(u'Mr. Best flew to New York on Saturday morning.')
 | 
						||
    ents = list(tokens.ents)
 | 
						||
    assert ents[0].label == 346
 | 
						||
    assert ents[0].label_ == 'PERSON'
 | 
						||
    assert ents[0].text == 'Mr. Best'
 | 
						||
 | 
						||
+table(["Name", "Type", "Description"])
 | 
						||
    +footrow
 | 
						||
        +cell yields
 | 
						||
        +cell #[code Span]
 | 
						||
        +cell Entities in the document.
 | 
						||
 | 
						||
+h(2, "noun_chunks") Doc.noun_chunks
 | 
						||
    +tag property
 | 
						||
    +tag-model("parse")
 | 
						||
 | 
						||
p
 | 
						||
    |  Iterate over the base noun phrases in the document. Yields base
 | 
						||
    |  noun-phrase #[code Span] objects, if the document has been syntactically
 | 
						||
    |  parsed. A base noun phrase, or "NP chunk", is a noun phrase that does not
 | 
						||
    |  permit other NPs to be nested within it – so no NP-level coordination, no
 | 
						||
    |  prepositional phrases, and no relative clauses.
 | 
						||
 | 
						||
+aside-code("Example").
 | 
						||
    doc = nlp(u'A phrase with another phrase occurs.')
 | 
						||
    chunks = list(doc.noun_chunks)
 | 
						||
    assert chunks[0].text == "A phrase"
 | 
						||
    assert chunks[1].text == "another phrase"
 | 
						||
 | 
						||
+table(["Name", "Type", "Description"])
 | 
						||
    +footrow
 | 
						||
        +cell yields
 | 
						||
        +cell #[code Span]
 | 
						||
        +cell Noun chunks in the document.
 | 
						||
 | 
						||
+h(2, "sents") Doc.sents
 | 
						||
    +tag property
 | 
						||
    +tag-model("parse")
 | 
						||
 | 
						||
p
 | 
						||
    |  Iterate over the sentences in the document. Sentence spans have no label.
 | 
						||
    |  To improve accuracy on informal texts, spaCy calculates sentence boundaries
 | 
						||
    |  from the syntactic dependency parse. If the parser is disabled,
 | 
						||
    |  the #[code sents] iterator will be unavailable.
 | 
						||
 | 
						||
+aside-code("Example").
 | 
						||
    doc = nlp(u"This is a sentence. Here's another...")
 | 
						||
    sents = list(doc.sents)
 | 
						||
    assert len(sents) == 2
 | 
						||
    assert [s.root.text for s in sents] == ["is", "'s"]
 | 
						||
 | 
						||
+table(["Name", "Type", "Description"])
 | 
						||
    +footrow
 | 
						||
        +cell yields
 | 
						||
        +cell #[code Span]
 | 
						||
        +cell Sentences in the document.
 | 
						||
 | 
						||
+h(2, "has_vector") Doc.has_vector
 | 
						||
    +tag property
 | 
						||
    +tag-model("vectors")
 | 
						||
 | 
						||
p
 | 
						||
    |  A boolean value indicating whether a word vector is associated with the
 | 
						||
    |  object.
 | 
						||
 | 
						||
+aside-code("Example").
 | 
						||
    doc = nlp(u'I like apples')
 | 
						||
    assert doc.has_vector
 | 
						||
 | 
						||
+table(["Name", "Type", "Description"])
 | 
						||
    +footrow
 | 
						||
        +cell returns
 | 
						||
        +cell bool
 | 
						||
        +cell Whether the document has a vector data attached.
 | 
						||
 | 
						||
+h(2, "vector") Doc.vector
 | 
						||
    +tag property
 | 
						||
    +tag-model("vectors")
 | 
						||
 | 
						||
p
 | 
						||
    |  A real-valued meaning representation. Defaults to an average of the
 | 
						||
    |  token vectors.
 | 
						||
 | 
						||
+aside-code("Example").
 | 
						||
    apples = nlp(u'I like apples')
 | 
						||
    assert doc.vector.dtype == 'float32'
 | 
						||
    assert doc.vector.shape == (300,)
 | 
						||
 | 
						||
+table(["Name", "Type", "Description"])
 | 
						||
    +footrow
 | 
						||
        +cell returns
 | 
						||
        +cell #[code numpy.ndarray[ndim=1, dtype='float32']]
 | 
						||
        +cell A 1D numpy array representing the document's semantics.
 | 
						||
 | 
						||
+h(2, "vector_norm") Doc.vector_norm
 | 
						||
    +tag property
 | 
						||
    +tag-model("vectors")
 | 
						||
 | 
						||
p
 | 
						||
    |  The L2 norm of the document's vector representation.
 | 
						||
 | 
						||
+aside-code("Example").
 | 
						||
    doc1 = nlp(u'I like apples')
 | 
						||
    doc2 = nlp(u'I like oranges')
 | 
						||
    doc1.vector_norm # 4.54232424414368
 | 
						||
    doc2.vector_norm # 3.304373298575751
 | 
						||
    assert doc1.vector_norm != doc2.vector_norm
 | 
						||
 | 
						||
+table(["Name", "Type", "Description"])
 | 
						||
    +footrow
 | 
						||
        +cell returns
 | 
						||
        +cell float
 | 
						||
        +cell The L2 norm of the vector representation.
 | 
						||
 | 
						||
+h(2, "attributes") Attributes
 | 
						||
 | 
						||
+table(["Name", "Type", "Description"])
 | 
						||
    +row
 | 
						||
        +cell #[code text]
 | 
						||
        +cell unicode
 | 
						||
        +cell A unicode representation of the document text.
 | 
						||
 | 
						||
    +row
 | 
						||
        +cell #[code text_with_ws]
 | 
						||
        +cell unicode
 | 
						||
        +cell
 | 
						||
            |  An alias of #[code Doc.text], provided for duck-type compatibility
 | 
						||
            |  with #[code Span] and #[code Token].
 | 
						||
 | 
						||
    +row
 | 
						||
        +cell #[code mem]
 | 
						||
        +cell #[code Pool]
 | 
						||
        +cell The document's local memory heap, for all C data it owns.
 | 
						||
 | 
						||
    +row
 | 
						||
        +cell #[code vocab]
 | 
						||
        +cell #[code Vocab]
 | 
						||
        +cell The store of lexical types.
 | 
						||
 | 
						||
    +row
 | 
						||
        +cell #[code tensor]
 | 
						||
        +cell object
 | 
						||
        +cell Container for dense vector representations.
 | 
						||
 | 
						||
    +row
 | 
						||
        +cell #[code user_data]
 | 
						||
        +cell -
 | 
						||
        +cell A generic storage area, for user custom data.
 | 
						||
 | 
						||
    +row
 | 
						||
        +cell #[code is_tagged]
 | 
						||
        +cell bool
 | 
						||
        +cell
 | 
						||
            |  A flag indicating that the document has been part-of-speech
 | 
						||
            |  tagged.
 | 
						||
 | 
						||
    +row
 | 
						||
        +cell #[code is_parsed]
 | 
						||
        +cell bool
 | 
						||
        +cell A flag indicating that the document has been syntactically parsed.
 | 
						||
 | 
						||
    +row
 | 
						||
        +cell #[code sentiment]
 | 
						||
        +cell float
 | 
						||
        +cell The document's positivity/negativity score, if available.
 | 
						||
 | 
						||
    +row
 | 
						||
        +cell #[code user_hooks]
 | 
						||
        +cell dict
 | 
						||
        +cell
 | 
						||
            |  A dictionary that allows customisation of the #[code Doc]'s
 | 
						||
            |  properties.
 | 
						||
 | 
						||
    +row
 | 
						||
        +cell #[code user_token_hooks]
 | 
						||
        +cell dict
 | 
						||
        +cell
 | 
						||
            |  A dictionary that allows customisation of properties of
 | 
						||
            |  #[code Token] children.
 | 
						||
 | 
						||
    +row
 | 
						||
        +cell #[code user_span_hooks]
 | 
						||
        +cell dict
 | 
						||
        +cell
 | 
						||
            |  A dictionary that allows customisation of properties of
 | 
						||
            |  #[code Span] children.
 |