mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-16 04:26:27 +03:00
b4e457d9fe
* Add support for multiple code files to all relevant commands Prior to this, only the package command supported multiple code files. * Update docs * Add debug data test, plus generic fixtures One tricky thing here: it's tempting to create the config by creating a pipeline in code, but that requires declaring the custom components here. However the CliRunner appears to be run in the same process or otherwise have access to our registry, so it works even without any code arguments. So it's necessary to avoid declaring the components in the tests. * Add debug config test and restructure The code argument imports the provided file. If it adds item to the registry, that affects global state, which CliRunner doesn't isolate. Since there's no standard way to remove things from the registry, this instead uses subprocess.run to run commands. * Use a more generic, parametrized test * Add output arg for assemble and pretrain Assemble and pretrain require an output argument. This commit adds assemble testing, but not pretrain, as that requires an actual trainable component, which is not currently in the test config. * Add evaluate test and some cleanup * Mark tests as slow * Revert argument name change * Apply suggestions from code review Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com> * Format API CLI docs * isort * Fix imports in tests * isort * Undo changes to package CLI help * Fix python executable and lang code in test * Fix executable in another test --------- Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com> Co-authored-by: Raphael Mitsch <r.mitsch@outlook.com>
1233 lines
49 KiB
Python
1233 lines
49 KiB
Python
import math
|
|
import sys
|
|
from collections import Counter
|
|
from pathlib import Path
|
|
from typing import (
|
|
Any,
|
|
Dict,
|
|
Iterable,
|
|
List,
|
|
Literal,
|
|
Optional,
|
|
Sequence,
|
|
Set,
|
|
Tuple,
|
|
Union,
|
|
cast,
|
|
overload,
|
|
)
|
|
|
|
import numpy
|
|
import srsly
|
|
import typer
|
|
from wasabi import MESSAGES, Printer, msg
|
|
|
|
from .. import util
|
|
from ..language import Language
|
|
from ..morphology import Morphology
|
|
from ..pipeline import Morphologizer, SpanCategorizer, TrainablePipe
|
|
from ..pipeline._edit_tree_internals.edit_trees import EditTrees
|
|
from ..pipeline._parser_internals import nonproj
|
|
from ..pipeline._parser_internals.nonproj import DELIMITER
|
|
from ..schemas import ConfigSchemaTraining
|
|
from ..training import Example, remove_bilu_prefix
|
|
from ..training.initialize import get_sourced_components
|
|
from ..util import registry, resolve_dot_names
|
|
from ..vectors import Mode as VectorsMode
|
|
from ._util import (
|
|
Arg,
|
|
Opt,
|
|
_format_number,
|
|
app,
|
|
debug_cli,
|
|
import_code_paths,
|
|
parse_config_overrides,
|
|
show_validation_error,
|
|
)
|
|
|
|
# Minimum number of expected occurrences of NER label in data to train new label
|
|
NEW_LABEL_THRESHOLD = 50
|
|
# Minimum number of expected occurrences of dependency labels
|
|
DEP_LABEL_THRESHOLD = 20
|
|
# Minimum number of expected examples to train a new pipeline
|
|
BLANK_MODEL_MIN_THRESHOLD = 100
|
|
BLANK_MODEL_THRESHOLD = 2000
|
|
# Arbitrary threshold where SpanCat performs well
|
|
SPAN_DISTINCT_THRESHOLD = 1
|
|
# Arbitrary threshold where SpanCat performs well
|
|
BOUNDARY_DISTINCT_THRESHOLD = 1
|
|
# Arbitrary threshold for filtering span lengths during reporting (percentage)
|
|
SPAN_LENGTH_THRESHOLD_PERCENTAGE = 90
|
|
|
|
|
|
@debug_cli.command(
|
|
"data", context_settings={"allow_extra_args": True, "ignore_unknown_options": True}
|
|
)
|
|
@app.command(
|
|
"debug-data",
|
|
context_settings={"allow_extra_args": True, "ignore_unknown_options": True},
|
|
hidden=True, # hide this from main CLI help but still allow it to work with warning
|
|
)
|
|
def debug_data_cli(
|
|
# fmt: off
|
|
ctx: typer.Context, # This is only used to read additional arguments
|
|
config_path: Path = Arg(..., help="Path to config file", exists=True, allow_dash=True),
|
|
code_path: str = Opt("", "--code", "-c", help="Comma-separated paths to Python files with additional code (registered functions) to be imported"),
|
|
ignore_warnings: bool = Opt(False, "--ignore-warnings", "-IW", help="Ignore warnings, only show stats and errors"),
|
|
verbose: bool = Opt(False, "--verbose", "-V", help="Print additional information and explanations"),
|
|
no_format: bool = Opt(False, "--no-format", "-NF", help="Don't pretty-print the results"),
|
|
# fmt: on
|
|
):
|
|
"""
|
|
Analyze, debug and validate your training and development data. Outputs
|
|
useful stats, and can help you find problems like invalid entity annotations,
|
|
cyclic dependencies, low data labels and more.
|
|
|
|
DOCS: https://spacy.io/api/cli#debug-data
|
|
"""
|
|
if ctx.command.name == "debug-data":
|
|
msg.warn(
|
|
"The debug-data command is now available via the 'debug data' "
|
|
"subcommand (without the hyphen). You can run python -m spacy debug "
|
|
"--help for an overview of the other available debugging commands."
|
|
)
|
|
overrides = parse_config_overrides(ctx.args)
|
|
import_code_paths(code_path)
|
|
debug_data(
|
|
config_path,
|
|
config_overrides=overrides,
|
|
ignore_warnings=ignore_warnings,
|
|
verbose=verbose,
|
|
no_format=no_format,
|
|
silent=False,
|
|
)
|
|
|
|
|
|
def debug_data(
|
|
config_path: Path,
|
|
*,
|
|
config_overrides: Dict[str, Any] = {},
|
|
ignore_warnings: bool = False,
|
|
verbose: bool = False,
|
|
no_format: bool = True,
|
|
silent: bool = True,
|
|
):
|
|
msg = Printer(
|
|
no_print=silent, pretty=not no_format, ignore_warnings=ignore_warnings
|
|
)
|
|
# Make sure all files and paths exists if they are needed
|
|
with show_validation_error(config_path):
|
|
cfg = util.load_config(config_path, overrides=config_overrides)
|
|
nlp = util.load_model_from_config(cfg)
|
|
config = nlp.config.interpolate()
|
|
T = registry.resolve(config["training"], schema=ConfigSchemaTraining)
|
|
# Use original config here, not resolved version
|
|
sourced_components = get_sourced_components(cfg)
|
|
frozen_components = T["frozen_components"]
|
|
resume_components = [p for p in sourced_components if p not in frozen_components]
|
|
pipeline = nlp.pipe_names
|
|
factory_names = [nlp.get_pipe_meta(pipe).factory for pipe in nlp.pipe_names]
|
|
msg.divider("Data file validation")
|
|
|
|
# Create the gold corpus to be able to better analyze data
|
|
dot_names = [T["train_corpus"], T["dev_corpus"]]
|
|
train_corpus, dev_corpus = resolve_dot_names(config, dot_names)
|
|
|
|
nlp.initialize(lambda: train_corpus(nlp))
|
|
msg.good("Pipeline can be initialized with data")
|
|
|
|
train_dataset = list(train_corpus(nlp))
|
|
dev_dataset = list(dev_corpus(nlp))
|
|
msg.good("Corpus is loadable")
|
|
|
|
# Create all gold data here to avoid iterating over the train_dataset constantly
|
|
gold_train_data = _compile_gold(train_dataset, factory_names, nlp, make_proj=True)
|
|
gold_train_unpreprocessed_data = _compile_gold(
|
|
train_dataset, factory_names, nlp, make_proj=False
|
|
)
|
|
gold_dev_data = _compile_gold(dev_dataset, factory_names, nlp, make_proj=True)
|
|
|
|
train_texts = gold_train_data["texts"]
|
|
dev_texts = gold_dev_data["texts"]
|
|
frozen_components = T["frozen_components"]
|
|
|
|
msg.divider("Training stats")
|
|
msg.text(f"Language: {nlp.lang}")
|
|
msg.text(f"Training pipeline: {', '.join(pipeline)}")
|
|
if resume_components:
|
|
msg.text(f"Components from other pipelines: {', '.join(resume_components)}")
|
|
if frozen_components:
|
|
msg.text(f"Frozen components: {', '.join(frozen_components)}")
|
|
msg.text(f"{len(train_dataset)} training docs")
|
|
msg.text(f"{len(dev_dataset)} evaluation docs")
|
|
|
|
if not len(gold_dev_data):
|
|
msg.fail("No evaluation docs")
|
|
overlap = len(train_texts.intersection(dev_texts))
|
|
if overlap:
|
|
msg.warn(f"{overlap} training examples also in evaluation data")
|
|
else:
|
|
msg.good("No overlap between training and evaluation data")
|
|
# TODO: make this feedback more fine-grained and report on updated
|
|
# components vs. blank components
|
|
if not resume_components and len(train_dataset) < BLANK_MODEL_THRESHOLD:
|
|
text = f"Low number of examples to train a new pipeline ({len(train_dataset)})"
|
|
if len(train_dataset) < BLANK_MODEL_MIN_THRESHOLD:
|
|
msg.fail(text)
|
|
else:
|
|
msg.warn(text)
|
|
msg.text(
|
|
f"It's recommended to use at least {BLANK_MODEL_THRESHOLD} examples "
|
|
f"(minimum {BLANK_MODEL_MIN_THRESHOLD})",
|
|
show=verbose,
|
|
)
|
|
|
|
msg.divider("Vocab & Vectors")
|
|
n_words = gold_train_data["n_words"]
|
|
msg.info(
|
|
f"{n_words} total word(s) in the data ({len(gold_train_data['words'])} unique)"
|
|
)
|
|
if gold_train_data["n_misaligned_words"] > 0:
|
|
n_misaligned = gold_train_data["n_misaligned_words"]
|
|
msg.warn(f"{n_misaligned} misaligned tokens in the training data")
|
|
if gold_dev_data["n_misaligned_words"] > 0:
|
|
n_misaligned = gold_dev_data["n_misaligned_words"]
|
|
msg.warn(f"{n_misaligned} misaligned tokens in the dev data")
|
|
most_common_words = gold_train_data["words"].most_common(10)
|
|
msg.text(
|
|
f"10 most common words: {_format_labels(most_common_words, counts=True)}",
|
|
show=verbose,
|
|
)
|
|
if len(nlp.vocab.vectors):
|
|
if nlp.vocab.vectors.mode == VectorsMode.floret:
|
|
msg.info(
|
|
f"floret vectors with {len(nlp.vocab.vectors)} vectors, "
|
|
f"{nlp.vocab.vectors_length} dimensions, "
|
|
f"{nlp.vocab.vectors.minn}-{nlp.vocab.vectors.maxn} char "
|
|
f"n-gram subwords"
|
|
)
|
|
else:
|
|
msg.info(
|
|
f"{len(nlp.vocab.vectors)} vectors ({nlp.vocab.vectors.n_keys} "
|
|
f"unique keys, {nlp.vocab.vectors_length} dimensions)"
|
|
)
|
|
n_missing_vectors = sum(gold_train_data["words_missing_vectors"].values())
|
|
msg.warn(
|
|
"{} words in training data without vectors ({:.0f}%)".format(
|
|
n_missing_vectors,
|
|
100 * (n_missing_vectors / gold_train_data["n_words"]),
|
|
),
|
|
)
|
|
msg.text(
|
|
"10 most common words without vectors: {}".format(
|
|
_format_labels(
|
|
gold_train_data["words_missing_vectors"].most_common(10),
|
|
counts=True,
|
|
)
|
|
),
|
|
show=verbose,
|
|
)
|
|
else:
|
|
msg.info("No word vectors present in the package")
|
|
|
|
if "spancat" in factory_names or "spancat_singlelabel" in factory_names:
|
|
model_labels_spancat = _get_labels_from_spancat(nlp)
|
|
has_low_data_warning = False
|
|
has_no_neg_warning = False
|
|
|
|
msg.divider("Span Categorization")
|
|
msg.table(model_labels_spancat, header=["Spans Key", "Labels"], divider=True)
|
|
|
|
msg.text("Label counts in train data: ", show=verbose)
|
|
for spans_key, data_labels in gold_train_data["spancat"].items():
|
|
msg.text(
|
|
f"Key: {spans_key}, {_format_labels(data_labels.items(), counts=True)}",
|
|
show=verbose,
|
|
)
|
|
# Data checks: only take the spans keys in the actual spancat components
|
|
data_labels_in_component = {
|
|
spans_key: gold_train_data["spancat"][spans_key]
|
|
for spans_key in model_labels_spancat.keys()
|
|
}
|
|
for spans_key, data_labels in data_labels_in_component.items():
|
|
for label, count in data_labels.items():
|
|
# Check for missing labels
|
|
spans_key_in_model = spans_key in model_labels_spancat.keys()
|
|
if (spans_key_in_model) and (
|
|
label not in model_labels_spancat[spans_key]
|
|
):
|
|
msg.warn(
|
|
f"Label '{label}' is not present in the model labels of key '{spans_key}'. "
|
|
"Performance may degrade after training."
|
|
)
|
|
# Check for low number of examples per label
|
|
if count <= NEW_LABEL_THRESHOLD:
|
|
msg.warn(
|
|
f"Low number of examples for label '{label}' in key '{spans_key}' ({count})"
|
|
)
|
|
has_low_data_warning = True
|
|
# Check for negative examples
|
|
with msg.loading("Analyzing label distribution..."):
|
|
neg_docs = _get_examples_without_label(
|
|
train_dataset, label, "spancat", spans_key
|
|
)
|
|
if neg_docs == 0:
|
|
msg.warn(f"No examples for texts WITHOUT new label '{label}'")
|
|
has_no_neg_warning = True
|
|
|
|
with msg.loading("Obtaining span characteristics..."):
|
|
span_characteristics = _get_span_characteristics(
|
|
train_dataset, gold_train_data, spans_key
|
|
)
|
|
|
|
msg.info(f"Span characteristics for spans_key '{spans_key}'")
|
|
msg.info("SD = Span Distinctiveness, BD = Boundary Distinctiveness")
|
|
_print_span_characteristics(span_characteristics)
|
|
|
|
_span_freqs = _get_spans_length_freq_dist(
|
|
gold_train_data["spans_length"][spans_key]
|
|
)
|
|
_filtered_span_freqs = _filter_spans_length_freq_dist(
|
|
_span_freqs, threshold=SPAN_LENGTH_THRESHOLD_PERCENTAGE
|
|
)
|
|
|
|
msg.info(
|
|
f"Over {SPAN_LENGTH_THRESHOLD_PERCENTAGE}% of spans have lengths of 1 -- "
|
|
f"{max(_filtered_span_freqs.keys())} "
|
|
f"(min={span_characteristics['min_length']}, max={span_characteristics['max_length']}). "
|
|
f"The most common span lengths are: {_format_freqs(_filtered_span_freqs)}. "
|
|
"If you are using the n-gram suggester, note that omitting "
|
|
"infrequent n-gram lengths can greatly improve speed and "
|
|
"memory usage."
|
|
)
|
|
|
|
msg.text(
|
|
f"Full distribution of span lengths: {_format_freqs(_span_freqs)}",
|
|
show=verbose,
|
|
)
|
|
|
|
# Add report regarding span characteristics
|
|
if span_characteristics["avg_sd"] < SPAN_DISTINCT_THRESHOLD:
|
|
msg.warn("Spans may not be distinct from the rest of the corpus")
|
|
else:
|
|
msg.good("Spans are distinct from the rest of the corpus")
|
|
|
|
p_spans = span_characteristics["p_spans"].values()
|
|
all_span_tokens: Counter = sum(p_spans, Counter())
|
|
most_common_spans = [w for w, _ in all_span_tokens.most_common(10)]
|
|
msg.text(
|
|
"10 most common span tokens: {}".format(
|
|
_format_labels(most_common_spans)
|
|
),
|
|
show=verbose,
|
|
)
|
|
|
|
# Add report regarding span boundary characteristics
|
|
if span_characteristics["avg_bd"] < BOUNDARY_DISTINCT_THRESHOLD:
|
|
msg.warn("Boundary tokens are not distinct from the rest of the corpus")
|
|
else:
|
|
msg.good("Boundary tokens are distinct from the rest of the corpus")
|
|
|
|
p_bounds = span_characteristics["p_bounds"].values()
|
|
all_span_bound_tokens: Counter = sum(p_bounds, Counter())
|
|
most_common_bounds = [w for w, _ in all_span_bound_tokens.most_common(10)]
|
|
msg.text(
|
|
"10 most common span boundary tokens: {}".format(
|
|
_format_labels(most_common_bounds)
|
|
),
|
|
show=verbose,
|
|
)
|
|
|
|
if has_low_data_warning:
|
|
msg.text(
|
|
f"To train a new span type, your data should include at "
|
|
f"least {NEW_LABEL_THRESHOLD} instances of the new label",
|
|
show=verbose,
|
|
)
|
|
else:
|
|
msg.good("Good amount of examples for all labels")
|
|
|
|
if has_no_neg_warning:
|
|
msg.text(
|
|
"Training data should always include examples of spans "
|
|
"in context, as well as examples without a given span "
|
|
"type.",
|
|
show=verbose,
|
|
)
|
|
else:
|
|
msg.good("Examples without occurrences available for all labels")
|
|
|
|
if "ner" in factory_names:
|
|
# Get all unique NER labels present in the data
|
|
labels = set(
|
|
label for label in gold_train_data["ner"] if label not in ("O", "-", None)
|
|
)
|
|
label_counts = gold_train_data["ner"]
|
|
model_labels = _get_labels_from_model(nlp, "ner")
|
|
has_low_data_warning = False
|
|
has_no_neg_warning = False
|
|
has_ws_ents_error = False
|
|
has_boundary_cross_ents_warning = False
|
|
|
|
msg.divider("Named Entity Recognition")
|
|
msg.info(f"{len(model_labels)} label(s)")
|
|
missing_values = label_counts["-"]
|
|
msg.text(f"{missing_values} missing value(s) (tokens with '-' label)")
|
|
for label in labels:
|
|
if len(label) == 0:
|
|
msg.fail("Empty label found in train data")
|
|
labels_with_counts = [
|
|
(label, count)
|
|
for label, count in label_counts.most_common()
|
|
if label != "-"
|
|
]
|
|
labels_with_counts = _format_labels(labels_with_counts, counts=True)
|
|
msg.text(f"Labels in train data: {labels_with_counts}", show=verbose)
|
|
missing_labels = model_labels - labels
|
|
if missing_labels:
|
|
msg.warn(
|
|
"Some model labels are not present in the train data. The "
|
|
"model performance may be degraded for these labels after "
|
|
f"training: {_format_labels(missing_labels)}."
|
|
)
|
|
if gold_train_data["ws_ents"]:
|
|
msg.fail(f"{gold_train_data['ws_ents']} invalid whitespace entity spans")
|
|
has_ws_ents_error = True
|
|
|
|
for label in labels:
|
|
if label_counts[label] <= NEW_LABEL_THRESHOLD:
|
|
msg.warn(
|
|
f"Low number of examples for label '{label}' ({label_counts[label]})"
|
|
)
|
|
has_low_data_warning = True
|
|
|
|
with msg.loading("Analyzing label distribution..."):
|
|
neg_docs = _get_examples_without_label(train_dataset, label, "ner")
|
|
if neg_docs == 0:
|
|
msg.warn(f"No examples for texts WITHOUT new label '{label}'")
|
|
has_no_neg_warning = True
|
|
|
|
if gold_train_data["boundary_cross_ents"]:
|
|
msg.warn(
|
|
f"{gold_train_data['boundary_cross_ents']} entity span(s) crossing sentence boundaries"
|
|
)
|
|
has_boundary_cross_ents_warning = True
|
|
|
|
if not has_low_data_warning:
|
|
msg.good("Good amount of examples for all labels")
|
|
if not has_no_neg_warning:
|
|
msg.good("Examples without occurrences available for all labels")
|
|
if not has_ws_ents_error:
|
|
msg.good("No entities consisting of or starting/ending with whitespace")
|
|
if not has_boundary_cross_ents_warning:
|
|
msg.good("No entities crossing sentence boundaries")
|
|
|
|
if has_low_data_warning:
|
|
msg.text(
|
|
f"To train a new entity type, your data should include at "
|
|
f"least {NEW_LABEL_THRESHOLD} instances of the new label",
|
|
show=verbose,
|
|
)
|
|
if has_no_neg_warning:
|
|
msg.text(
|
|
"Training data should always include examples of entities "
|
|
"in context, as well as examples without a given entity "
|
|
"type.",
|
|
show=verbose,
|
|
)
|
|
if has_ws_ents_error:
|
|
msg.text(
|
|
"Entity spans consisting of or starting/ending "
|
|
"with whitespace characters are considered invalid."
|
|
)
|
|
|
|
if "textcat" in factory_names:
|
|
msg.divider("Text Classification (Exclusive Classes)")
|
|
labels = _get_labels_from_model(nlp, "textcat")
|
|
msg.info(f"Text Classification: {len(labels)} label(s)")
|
|
msg.text(f"Labels: {_format_labels(labels)}", show=verbose)
|
|
missing_labels = labels - set(gold_train_data["cats"])
|
|
if missing_labels:
|
|
msg.warn(
|
|
"Some model labels are not present in the train data. The "
|
|
"model performance may be degraded for these labels after "
|
|
f"training: {_format_labels(missing_labels)}."
|
|
)
|
|
if set(gold_train_data["cats"]) != set(gold_dev_data["cats"]):
|
|
msg.warn(
|
|
"Potential train/dev mismatch: the train and dev labels are "
|
|
"not the same. "
|
|
f"Train labels: {_format_labels(gold_train_data['cats'])}. "
|
|
f"Dev labels: {_format_labels(gold_dev_data['cats'])}."
|
|
)
|
|
if len(labels) < 2:
|
|
msg.fail(
|
|
"The model does not have enough labels. 'textcat' requires at "
|
|
"least two labels due to mutually-exclusive classes, e.g. "
|
|
"LABEL/NOT_LABEL or POSITIVE/NEGATIVE for a binary "
|
|
"classification task."
|
|
)
|
|
if (
|
|
gold_train_data["n_cats_bad_values"] > 0
|
|
or gold_dev_data["n_cats_bad_values"] > 0
|
|
):
|
|
msg.fail(
|
|
"Unsupported values for cats: the supported values are "
|
|
"1.0/True and 0.0/False."
|
|
)
|
|
if gold_train_data["n_cats_multilabel"] > 0:
|
|
# Note: you should never get here because you run into E895 on
|
|
# initialization first.
|
|
msg.fail(
|
|
"The train data contains instances without mutually-exclusive "
|
|
"classes. Use the component 'textcat_multilabel' instead of "
|
|
"'textcat'."
|
|
)
|
|
if gold_dev_data["n_cats_multilabel"] > 0:
|
|
msg.fail(
|
|
"The dev data contains instances without mutually-exclusive "
|
|
"classes. Use the component 'textcat_multilabel' instead of "
|
|
"'textcat'."
|
|
)
|
|
|
|
if "textcat_multilabel" in factory_names:
|
|
msg.divider("Text Classification (Multilabel)")
|
|
labels = _get_labels_from_model(nlp, "textcat_multilabel")
|
|
msg.info(f"Text Classification: {len(labels)} label(s)")
|
|
msg.text(f"Labels: {_format_labels(labels)}", show=verbose)
|
|
missing_labels = labels - set(gold_train_data["cats"])
|
|
if missing_labels:
|
|
msg.warn(
|
|
"Some model labels are not present in the train data. The "
|
|
"model performance may be degraded for these labels after "
|
|
f"training: {_format_labels(missing_labels)}."
|
|
)
|
|
if set(gold_train_data["cats"]) != set(gold_dev_data["cats"]):
|
|
msg.warn(
|
|
"Potential train/dev mismatch: the train and dev labels are "
|
|
"not the same. "
|
|
f"Train labels: {_format_labels(gold_train_data['cats'])}. "
|
|
f"Dev labels: {_format_labels(gold_dev_data['cats'])}."
|
|
)
|
|
if (
|
|
gold_train_data["n_cats_bad_values"] > 0
|
|
or gold_dev_data["n_cats_bad_values"] > 0
|
|
):
|
|
msg.fail(
|
|
"Unsupported values for cats: the supported values are "
|
|
"1.0/True and 0.0/False."
|
|
)
|
|
if gold_train_data["n_cats_multilabel"] > 0:
|
|
if gold_dev_data["n_cats_multilabel"] == 0:
|
|
msg.warn(
|
|
"Potential train/dev mismatch: the train data contains "
|
|
"instances without mutually-exclusive classes while the "
|
|
"dev data contains only instances with mutually-exclusive "
|
|
"classes."
|
|
)
|
|
else:
|
|
msg.warn(
|
|
"The train data contains only instances with "
|
|
"mutually-exclusive classes. You can potentially use the "
|
|
"component 'textcat' instead of 'textcat_multilabel'."
|
|
)
|
|
if gold_dev_data["n_cats_multilabel"] > 0:
|
|
msg.fail(
|
|
"Train/dev mismatch: the dev data contains instances "
|
|
"without mutually-exclusive classes while the train data "
|
|
"contains only instances with mutually-exclusive classes."
|
|
)
|
|
|
|
if "tagger" in factory_names:
|
|
msg.divider("Part-of-speech Tagging")
|
|
label_list, counts = zip(*gold_train_data["tags"].items())
|
|
msg.info(f"{len(label_list)} label(s) in train data")
|
|
p = numpy.array(counts)
|
|
p = p / p.sum()
|
|
norm_entropy = (-p * numpy.log2(p)).sum() / numpy.log2(len(label_list))
|
|
msg.info(f"{norm_entropy} is the normalised label entropy")
|
|
model_labels = _get_labels_from_model(nlp, "tagger")
|
|
labels = set(label_list)
|
|
missing_labels = model_labels - labels
|
|
if missing_labels:
|
|
msg.warn(
|
|
"Some model labels are not present in the train data. The "
|
|
"model performance may be degraded for these labels after "
|
|
f"training: {_format_labels(missing_labels)}."
|
|
)
|
|
labels_with_counts = _format_labels(
|
|
gold_train_data["tags"].most_common(), counts=True
|
|
)
|
|
msg.text(labels_with_counts, show=verbose)
|
|
|
|
if "morphologizer" in factory_names:
|
|
msg.divider("Morphologizer (POS+Morph)")
|
|
label_list = [label for label in gold_train_data["morphs"]]
|
|
model_labels = _get_labels_from_model(nlp, "morphologizer")
|
|
msg.info(f"{len(label_list)} label(s) in train data")
|
|
labels = set(label_list)
|
|
missing_labels = model_labels - labels
|
|
if missing_labels:
|
|
msg.warn(
|
|
"Some model labels are not present in the train data. The "
|
|
"model performance may be degraded for these labels after "
|
|
f"training: {_format_labels(missing_labels)}."
|
|
)
|
|
labels_with_counts = _format_labels(
|
|
gold_train_data["morphs"].most_common(), counts=True
|
|
)
|
|
msg.text(labels_with_counts, show=verbose)
|
|
|
|
if "parser" in factory_names:
|
|
has_low_data_warning = False
|
|
msg.divider("Dependency Parsing")
|
|
|
|
# profile sentence length
|
|
msg.info(
|
|
f"Found {gold_train_data['n_sents']} sentence(s) with an average "
|
|
f"length of {gold_train_data['n_words'] / gold_train_data['n_sents']:.1f} words."
|
|
)
|
|
|
|
# check for documents with multiple sentences
|
|
sents_per_doc = gold_train_data["n_sents"] / len(gold_train_data["texts"])
|
|
if sents_per_doc < 1.1:
|
|
msg.warn(
|
|
f"The training data contains {sents_per_doc:.2f} sentences per "
|
|
f"document. When there are very few documents containing more "
|
|
f"than one sentence, the parser will not learn how to segment "
|
|
f"longer texts into sentences."
|
|
)
|
|
|
|
# profile labels
|
|
labels_train = [label for label in gold_train_data["deps"]]
|
|
labels_train_unpreprocessed = [
|
|
label for label in gold_train_unpreprocessed_data["deps"]
|
|
]
|
|
labels_dev = [label for label in gold_dev_data["deps"]]
|
|
|
|
if gold_train_unpreprocessed_data["n_nonproj"] > 0:
|
|
n_nonproj = gold_train_unpreprocessed_data["n_nonproj"]
|
|
msg.info(f"Found {n_nonproj} nonprojective train sentence(s)")
|
|
if gold_dev_data["n_nonproj"] > 0:
|
|
n_nonproj = gold_dev_data["n_nonproj"]
|
|
msg.info(f"Found {n_nonproj} nonprojective dev sentence(s)")
|
|
msg.info(f"{len(labels_train_unpreprocessed)} label(s) in train data")
|
|
msg.info(f"{len(labels_train)} label(s) in projectivized train data")
|
|
labels_with_counts = _format_labels(
|
|
gold_train_unpreprocessed_data["deps"].most_common(), counts=True
|
|
)
|
|
msg.text(labels_with_counts, show=verbose)
|
|
|
|
# rare labels in train
|
|
for label in gold_train_unpreprocessed_data["deps"]:
|
|
if gold_train_unpreprocessed_data["deps"][label] <= DEP_LABEL_THRESHOLD:
|
|
msg.warn(
|
|
f"Low number of examples for label '{label}' "
|
|
f"({gold_train_unpreprocessed_data['deps'][label]})"
|
|
)
|
|
has_low_data_warning = True
|
|
|
|
# rare labels in projectivized train
|
|
rare_projectivized_labels = []
|
|
for label in gold_train_data["deps"]:
|
|
if (
|
|
gold_train_data["deps"][label] <= DEP_LABEL_THRESHOLD
|
|
and DELIMITER in label
|
|
):
|
|
rare_projectivized_labels.append(
|
|
f"{label}: {gold_train_data['deps'][label]}"
|
|
)
|
|
|
|
if len(rare_projectivized_labels) > 0:
|
|
msg.warn(
|
|
f"Low number of examples for {len(rare_projectivized_labels)} "
|
|
"label(s) in the projectivized dependency trees used for "
|
|
"training. You may want to projectivize labels such as punct "
|
|
"before training in order to improve parser performance."
|
|
)
|
|
msg.warn(
|
|
f"Projectivized labels with low numbers of examples: ",
|
|
", ".join(rare_projectivized_labels),
|
|
show=verbose,
|
|
)
|
|
has_low_data_warning = True
|
|
|
|
# labels only in train
|
|
if set(labels_train) - set(labels_dev):
|
|
msg.warn(
|
|
"The following labels were found only in the train data:",
|
|
", ".join(set(labels_train) - set(labels_dev)),
|
|
show=verbose,
|
|
)
|
|
|
|
# labels only in dev
|
|
if set(labels_dev) - set(labels_train):
|
|
msg.warn(
|
|
"The following labels were found only in the dev data:",
|
|
", ".join(set(labels_dev) - set(labels_train)),
|
|
show=verbose,
|
|
)
|
|
|
|
if has_low_data_warning:
|
|
msg.text(
|
|
f"To train a parser, your data should include at "
|
|
f"least {DEP_LABEL_THRESHOLD} instances of each label.",
|
|
show=verbose,
|
|
)
|
|
|
|
# multiple root labels
|
|
if len(gold_train_unpreprocessed_data["roots"]) > 1:
|
|
msg.warn(
|
|
f"Multiple root labels "
|
|
f"({', '.join(gold_train_unpreprocessed_data['roots'])}) "
|
|
f"found in training data. spaCy's parser uses a single root "
|
|
f"label ROOT so this distinction will not be available."
|
|
)
|
|
|
|
# these should not happen, but just in case
|
|
if gold_train_data["n_nonproj"] > 0:
|
|
msg.fail(
|
|
f"Found {gold_train_data['n_nonproj']} nonprojective "
|
|
f"projectivized train sentence(s)"
|
|
)
|
|
if gold_train_data["n_cycles"] > 0:
|
|
msg.fail(
|
|
f"Found {gold_train_data['n_cycles']} projectivized train sentence(s) with cycles"
|
|
)
|
|
|
|
if "trainable_lemmatizer" in factory_names:
|
|
msg.divider("Trainable Lemmatizer")
|
|
trees_train: Set[str] = gold_train_data["lemmatizer_trees"]
|
|
trees_dev: Set[str] = gold_dev_data["lemmatizer_trees"]
|
|
# This is necessary context when someone is attempting to interpret whether the
|
|
# number of trees exclusively in the dev set is meaningful.
|
|
msg.info(f"{len(trees_train)} lemmatizer trees generated from training data")
|
|
msg.info(f"{len(trees_dev)} lemmatizer trees generated from dev data")
|
|
dev_not_train = trees_dev - trees_train
|
|
|
|
if len(dev_not_train) != 0:
|
|
pct = len(dev_not_train) / len(trees_dev)
|
|
msg.info(
|
|
f"{len(dev_not_train)} lemmatizer trees ({pct*100:.1f}% of dev trees)"
|
|
" were found exclusively in the dev data."
|
|
)
|
|
else:
|
|
# Would we ever expect this case? It seems like it would be pretty rare,
|
|
# and we might actually want a warning?
|
|
msg.info("All trees in dev data present in training data.")
|
|
|
|
if gold_train_data["n_low_cardinality_lemmas"] > 0:
|
|
n = gold_train_data["n_low_cardinality_lemmas"]
|
|
msg.warn(f"{n} training docs with 0 or 1 unique lemmas.")
|
|
|
|
if gold_dev_data["n_low_cardinality_lemmas"] > 0:
|
|
n = gold_dev_data["n_low_cardinality_lemmas"]
|
|
msg.warn(f"{n} dev docs with 0 or 1 unique lemmas.")
|
|
|
|
if gold_train_data["no_lemma_annotations"] > 0:
|
|
n = gold_train_data["no_lemma_annotations"]
|
|
msg.warn(f"{n} training docs with no lemma annotations.")
|
|
else:
|
|
msg.good("All training docs have lemma annotations.")
|
|
|
|
if gold_dev_data["no_lemma_annotations"] > 0:
|
|
n = gold_dev_data["no_lemma_annotations"]
|
|
msg.warn(f"{n} dev docs with no lemma annotations.")
|
|
else:
|
|
msg.good("All dev docs have lemma annotations.")
|
|
|
|
if gold_train_data["partial_lemma_annotations"] > 0:
|
|
n = gold_train_data["partial_lemma_annotations"]
|
|
msg.info(f"{n} training docs with partial lemma annotations.")
|
|
else:
|
|
msg.good("All training docs have complete lemma annotations.")
|
|
|
|
if gold_dev_data["partial_lemma_annotations"] > 0:
|
|
n = gold_dev_data["partial_lemma_annotations"]
|
|
msg.info(f"{n} dev docs with partial lemma annotations.")
|
|
else:
|
|
msg.good("All dev docs have complete lemma annotations.")
|
|
|
|
msg.divider("Summary")
|
|
good_counts = msg.counts[MESSAGES.GOOD]
|
|
warn_counts = msg.counts[MESSAGES.WARN]
|
|
fail_counts = msg.counts[MESSAGES.FAIL]
|
|
if good_counts:
|
|
msg.good(f"{good_counts} {'check' if good_counts == 1 else 'checks'} passed")
|
|
if warn_counts:
|
|
msg.warn(f"{warn_counts} {'warning' if warn_counts == 1 else 'warnings'}")
|
|
if fail_counts:
|
|
msg.fail(f"{fail_counts} {'error' if fail_counts == 1 else 'errors'}")
|
|
sys.exit(1)
|
|
|
|
|
|
def _load_file(file_path: Path, msg: Printer) -> None:
|
|
file_name = file_path.parts[-1]
|
|
if file_path.suffix == ".json":
|
|
with msg.loading(f"Loading {file_name}..."):
|
|
data = srsly.read_json(file_path)
|
|
msg.good(f"Loaded {file_name}")
|
|
return data
|
|
elif file_path.suffix == ".jsonl":
|
|
with msg.loading(f"Loading {file_name}..."):
|
|
data = srsly.read_jsonl(file_path)
|
|
msg.good(f"Loaded {file_name}")
|
|
return data
|
|
msg.fail(
|
|
f"Can't load file extension {file_path.suffix}",
|
|
"Expected .json or .jsonl",
|
|
exits=1,
|
|
)
|
|
|
|
|
|
def _compile_gold(
|
|
examples: Sequence[Example],
|
|
factory_names: List[str],
|
|
nlp: Language,
|
|
make_proj: bool,
|
|
) -> Dict[str, Any]:
|
|
data: Dict[str, Any] = {
|
|
"ner": Counter(),
|
|
"cats": Counter(),
|
|
"tags": Counter(),
|
|
"morphs": Counter(),
|
|
"deps": Counter(),
|
|
"words": Counter(),
|
|
"roots": Counter(),
|
|
"spancat": dict(),
|
|
"spans_length": dict(),
|
|
"spans_per_type": dict(),
|
|
"sb_per_type": dict(),
|
|
"ws_ents": 0,
|
|
"boundary_cross_ents": 0,
|
|
"n_words": 0,
|
|
"n_misaligned_words": 0,
|
|
"words_missing_vectors": Counter(),
|
|
"n_sents": 0,
|
|
"n_nonproj": 0,
|
|
"n_cycles": 0,
|
|
"n_cats_multilabel": 0,
|
|
"n_cats_bad_values": 0,
|
|
"texts": set(),
|
|
"lemmatizer_trees": set(),
|
|
"no_lemma_annotations": 0,
|
|
"partial_lemma_annotations": 0,
|
|
"n_low_cardinality_lemmas": 0,
|
|
}
|
|
if "trainable_lemmatizer" in factory_names:
|
|
trees = EditTrees(nlp.vocab.strings)
|
|
for eg in examples:
|
|
gold = eg.reference
|
|
doc = eg.predicted
|
|
valid_words = [x.text for x in gold]
|
|
data["words"].update(valid_words)
|
|
data["n_words"] += len(valid_words)
|
|
align = eg.alignment
|
|
for token in doc:
|
|
if token.orth_.isspace():
|
|
continue
|
|
if align.x2y.lengths[token.i] != 1:
|
|
data["n_misaligned_words"] += 1
|
|
data["texts"].add(doc.text)
|
|
if len(nlp.vocab.vectors):
|
|
for word in [t.text for t in doc]:
|
|
if nlp.vocab.strings[word] not in nlp.vocab.vectors:
|
|
data["words_missing_vectors"].update([word])
|
|
if "ner" in factory_names:
|
|
sent_starts = eg.get_aligned_sent_starts()
|
|
for i, label in enumerate(eg.get_aligned_ner()):
|
|
if label is None:
|
|
continue
|
|
if label.startswith(("B-", "U-", "L-")) and doc[i].is_space:
|
|
# "Illegal" whitespace entity
|
|
data["ws_ents"] += 1
|
|
if label.startswith(("B-", "U-")):
|
|
combined_label = remove_bilu_prefix(label)
|
|
data["ner"][combined_label] += 1
|
|
if sent_starts[i] and label.startswith(("I-", "L-")):
|
|
data["boundary_cross_ents"] += 1
|
|
elif label == "-":
|
|
data["ner"]["-"] += 1
|
|
if "spancat" in factory_names or "spancat_singlelabel" in factory_names:
|
|
for spans_key in list(eg.reference.spans.keys()):
|
|
# Obtain the span frequency
|
|
if spans_key not in data["spancat"]:
|
|
data["spancat"][spans_key] = Counter()
|
|
for i, span in enumerate(eg.reference.spans[spans_key]):
|
|
if span.label_ is None:
|
|
continue
|
|
else:
|
|
data["spancat"][spans_key][span.label_] += 1
|
|
|
|
# Obtain the span length
|
|
if spans_key not in data["spans_length"]:
|
|
data["spans_length"][spans_key] = dict()
|
|
for span in gold.spans[spans_key]:
|
|
if span.label_ is None:
|
|
continue
|
|
if span.label_ not in data["spans_length"][spans_key]:
|
|
data["spans_length"][spans_key][span.label_] = []
|
|
data["spans_length"][spans_key][span.label_].append(len(span))
|
|
|
|
# Obtain spans per span type
|
|
if spans_key not in data["spans_per_type"]:
|
|
data["spans_per_type"][spans_key] = dict()
|
|
for span in gold.spans[spans_key]:
|
|
if span.label_ not in data["spans_per_type"][spans_key]:
|
|
data["spans_per_type"][spans_key][span.label_] = []
|
|
data["spans_per_type"][spans_key][span.label_].append(span)
|
|
|
|
# Obtain boundary tokens per span type
|
|
window_size = 1
|
|
if spans_key not in data["sb_per_type"]:
|
|
data["sb_per_type"][spans_key] = dict()
|
|
for span in gold.spans[spans_key]:
|
|
if span.label_ not in data["sb_per_type"][spans_key]:
|
|
# Creating a data structure that holds the start and
|
|
# end tokens for each span type
|
|
data["sb_per_type"][spans_key][span.label_] = {
|
|
"start": [],
|
|
"end": [],
|
|
}
|
|
for offset in range(window_size):
|
|
sb_start_idx = span.start - (offset + 1)
|
|
if sb_start_idx >= 0:
|
|
data["sb_per_type"][spans_key][span.label_]["start"].append(
|
|
gold[sb_start_idx : sb_start_idx + 1]
|
|
)
|
|
|
|
sb_end_idx = span.end + (offset + 1)
|
|
if sb_end_idx <= len(gold):
|
|
data["sb_per_type"][spans_key][span.label_]["end"].append(
|
|
gold[sb_end_idx - 1 : sb_end_idx]
|
|
)
|
|
|
|
if "textcat" in factory_names or "textcat_multilabel" in factory_names:
|
|
data["cats"].update(gold.cats)
|
|
if any(val not in (0, 1) for val in gold.cats.values()):
|
|
data["n_cats_bad_values"] += 1
|
|
if list(gold.cats.values()).count(1) != 1:
|
|
data["n_cats_multilabel"] += 1
|
|
if "tagger" in factory_names:
|
|
tags = eg.get_aligned("TAG", as_string=True)
|
|
data["tags"].update([x for x in tags if x is not None])
|
|
if "morphologizer" in factory_names:
|
|
pos_tags = eg.get_aligned("POS", as_string=True)
|
|
morphs = eg.get_aligned("MORPH", as_string=True)
|
|
for pos, morph in zip(pos_tags, morphs):
|
|
# POS may align (same value for multiple tokens) when morph
|
|
# doesn't, so if either is misaligned (None), treat the
|
|
# annotation as missing so that truths doesn't end up with an
|
|
# unknown morph+POS combination
|
|
if pos is None or morph is None:
|
|
pass
|
|
# If both are unset, the annotation is missing (empty morph
|
|
# converted from int is "_" rather than "")
|
|
elif pos == "" and morph == "":
|
|
pass
|
|
# Otherwise, generate the combined label
|
|
else:
|
|
label_dict = Morphology.feats_to_dict(morph)
|
|
if pos:
|
|
label_dict[Morphologizer.POS_FEAT] = pos
|
|
label = eg.reference.vocab.strings[
|
|
eg.reference.vocab.morphology.add(label_dict)
|
|
]
|
|
data["morphs"].update([label])
|
|
if "parser" in factory_names:
|
|
aligned_heads, aligned_deps = eg.get_aligned_parse(projectivize=make_proj)
|
|
data["deps"].update([x for x in aligned_deps if x is not None])
|
|
for i, (dep, head) in enumerate(zip(aligned_deps, aligned_heads)):
|
|
if head == i:
|
|
data["roots"].update([dep])
|
|
data["n_sents"] += 1
|
|
if nonproj.is_nonproj_tree(aligned_heads):
|
|
data["n_nonproj"] += 1
|
|
if nonproj.contains_cycle(aligned_heads):
|
|
data["n_cycles"] += 1
|
|
if "trainable_lemmatizer" in factory_names:
|
|
# from EditTreeLemmatizer._labels_from_data
|
|
if all(token.lemma == 0 for token in gold):
|
|
data["no_lemma_annotations"] += 1
|
|
continue
|
|
if any(token.lemma == 0 for token in gold):
|
|
data["partial_lemma_annotations"] += 1
|
|
lemma_set = set()
|
|
for token in gold:
|
|
if token.lemma != 0:
|
|
lemma_set.add(token.lemma)
|
|
tree_id = trees.add(token.text, token.lemma_)
|
|
tree_str = trees.tree_to_str(tree_id)
|
|
data["lemmatizer_trees"].add(tree_str)
|
|
# We want to identify cases where lemmas aren't assigned
|
|
# or are all assigned the same value, as this would indicate
|
|
# an issue since we're expecting a large set of lemmas
|
|
if len(lemma_set) < 2 and len(gold) > 1:
|
|
data["n_low_cardinality_lemmas"] += 1
|
|
return data
|
|
|
|
|
|
@overload
|
|
def _format_labels(labels: Iterable[str], counts: Literal[False] = False) -> str:
|
|
...
|
|
|
|
|
|
@overload
|
|
def _format_labels(
|
|
labels: Iterable[Tuple[str, int]],
|
|
counts: Literal[True],
|
|
) -> str:
|
|
...
|
|
|
|
|
|
def _format_labels(
|
|
labels: Union[Iterable[str], Iterable[Tuple[str, int]]],
|
|
counts: bool = False,
|
|
) -> str:
|
|
if counts:
|
|
return ", ".join(
|
|
[f"'{l}' ({c})" for l, c in cast(Iterable[Tuple[str, int]], labels)]
|
|
)
|
|
return ", ".join([f"'{l}'" for l in cast(Iterable[str], labels)])
|
|
|
|
|
|
def _format_freqs(freqs: Dict[int, float], sort: bool = True) -> str:
|
|
if sort:
|
|
freqs = dict(sorted(freqs.items()))
|
|
|
|
_freqs = [(str(k), v) for k, v in freqs.items()]
|
|
return ", ".join(
|
|
[f"{l} ({c}%)" for l, c in cast(Iterable[Tuple[str, float]], _freqs)]
|
|
)
|
|
|
|
|
|
def _get_examples_without_label(
|
|
data: Sequence[Example],
|
|
label: str,
|
|
component: Literal["ner", "spancat"] = "ner",
|
|
spans_key: Optional[str] = "sc",
|
|
) -> int:
|
|
count = 0
|
|
for eg in data:
|
|
if component == "ner":
|
|
labels = [
|
|
remove_bilu_prefix(label)
|
|
for label in eg.get_aligned_ner()
|
|
if label not in ("O", "-", None)
|
|
]
|
|
|
|
if component == "spancat":
|
|
labels = (
|
|
[span.label_ for span in eg.reference.spans[spans_key]]
|
|
if spans_key in eg.reference.spans
|
|
else []
|
|
)
|
|
|
|
if label not in labels:
|
|
count += 1
|
|
return count
|
|
|
|
|
|
def _get_labels_from_model(nlp: Language, factory_name: str) -> Set[str]:
|
|
pipe_names = [
|
|
pipe_name
|
|
for pipe_name in nlp.pipe_names
|
|
if nlp.get_pipe_meta(pipe_name).factory == factory_name
|
|
]
|
|
labels: Set[str] = set()
|
|
for pipe_name in pipe_names:
|
|
pipe = nlp.get_pipe(pipe_name)
|
|
assert isinstance(pipe, TrainablePipe)
|
|
labels.update(pipe.labels)
|
|
return labels
|
|
|
|
|
|
def _get_labels_from_spancat(nlp: Language) -> Dict[str, Set[str]]:
|
|
pipe_names = [
|
|
pipe_name
|
|
for pipe_name in nlp.pipe_names
|
|
if nlp.get_pipe_meta(pipe_name).factory in ("spancat", "spancat_singlelabel")
|
|
]
|
|
labels: Dict[str, Set[str]] = {}
|
|
for pipe_name in pipe_names:
|
|
pipe = nlp.get_pipe(pipe_name)
|
|
assert isinstance(pipe, SpanCategorizer)
|
|
if pipe.key not in labels:
|
|
labels[pipe.key] = set()
|
|
labels[pipe.key].update(pipe.labels)
|
|
return labels
|
|
|
|
|
|
def _gmean(l: List) -> float:
|
|
"""Compute geometric mean of a list"""
|
|
return math.exp(math.fsum(math.log(i) for i in l) / len(l))
|
|
|
|
|
|
def _wgt_average(metric: Dict[str, float], frequencies: Counter) -> float:
|
|
total = sum(value * frequencies[span_type] for span_type, value in metric.items())
|
|
return total / sum(frequencies.values())
|
|
|
|
|
|
def _get_distribution(docs, normalize: bool = True) -> Counter:
|
|
"""Get the frequency distribution given a set of Docs"""
|
|
word_counts: Counter = Counter()
|
|
for doc in docs:
|
|
for token in doc:
|
|
# Normalize the text
|
|
t = token.text.lower().replace("``", '"').replace("''", '"')
|
|
word_counts[t] += 1
|
|
if normalize:
|
|
total = sum(word_counts.values(), 0.0)
|
|
word_counts = Counter({k: v / total for k, v in word_counts.items()})
|
|
return word_counts
|
|
|
|
|
|
def _get_kl_divergence(p: Counter, q: Counter) -> float:
|
|
"""Compute the Kullback-Leibler divergence from two frequency distributions"""
|
|
total = 0.0
|
|
for word, p_word in p.items():
|
|
total += p_word * math.log(p_word / q[word])
|
|
return total
|
|
|
|
|
|
def _format_span_row(span_data: List[Dict], labels: List[str]) -> List[Any]:
|
|
"""Compile into one list for easier reporting"""
|
|
d = {
|
|
label: [label] + list(_format_number(d[label]) for d in span_data)
|
|
for label in labels
|
|
}
|
|
return list(d.values())
|
|
|
|
|
|
def _get_span_characteristics(
|
|
examples: List[Example], compiled_gold: Dict[str, Any], spans_key: str
|
|
) -> Dict[str, Any]:
|
|
"""Obtain all span characteristics"""
|
|
data_labels = compiled_gold["spancat"][spans_key]
|
|
# Get lengths
|
|
span_length = {
|
|
label: _gmean(l)
|
|
for label, l in compiled_gold["spans_length"][spans_key].items()
|
|
}
|
|
spans_per_type = {
|
|
label: len(spans)
|
|
for label, spans in compiled_gold["spans_per_type"][spans_key].items()
|
|
}
|
|
min_lengths = [min(l) for l in compiled_gold["spans_length"][spans_key].values()]
|
|
max_lengths = [max(l) for l in compiled_gold["spans_length"][spans_key].values()]
|
|
|
|
# Get relevant distributions: corpus, spans, span boundaries
|
|
p_corpus = _get_distribution([eg.reference for eg in examples], normalize=True)
|
|
p_spans = {
|
|
label: _get_distribution(spans, normalize=True)
|
|
for label, spans in compiled_gold["spans_per_type"][spans_key].items()
|
|
}
|
|
p_bounds = {
|
|
label: _get_distribution(sb["start"] + sb["end"], normalize=True)
|
|
for label, sb in compiled_gold["sb_per_type"][spans_key].items()
|
|
}
|
|
|
|
# Compute for actual span characteristics
|
|
span_distinctiveness = {
|
|
label: _get_kl_divergence(freq_dist, p_corpus)
|
|
for label, freq_dist in p_spans.items()
|
|
}
|
|
sb_distinctiveness = {
|
|
label: _get_kl_divergence(freq_dist, p_corpus)
|
|
for label, freq_dist in p_bounds.items()
|
|
}
|
|
|
|
return {
|
|
"sd": span_distinctiveness,
|
|
"bd": sb_distinctiveness,
|
|
"spans_per_type": spans_per_type,
|
|
"lengths": span_length,
|
|
"min_length": min(min_lengths),
|
|
"max_length": max(max_lengths),
|
|
"avg_sd": _wgt_average(span_distinctiveness, data_labels),
|
|
"avg_bd": _wgt_average(sb_distinctiveness, data_labels),
|
|
"avg_length": _wgt_average(span_length, data_labels),
|
|
"labels": list(data_labels.keys()),
|
|
"p_spans": p_spans,
|
|
"p_bounds": p_bounds,
|
|
}
|
|
|
|
|
|
def _print_span_characteristics(span_characteristics: Dict[str, Any]):
|
|
"""Print all span characteristics into a table"""
|
|
headers = ("Span Type", "Length", "SD", "BD", "N")
|
|
# Wasabi has this at 30 by default, but we might have some long labels
|
|
max_col = max(30, max(len(label) for label in span_characteristics["labels"]))
|
|
# Prepare table data with all span characteristics
|
|
table_data = [
|
|
span_characteristics["lengths"],
|
|
span_characteristics["sd"],
|
|
span_characteristics["bd"],
|
|
span_characteristics["spans_per_type"],
|
|
]
|
|
table = _format_span_row(
|
|
span_data=table_data, labels=span_characteristics["labels"]
|
|
)
|
|
# Prepare table footer with weighted averages
|
|
footer_data = [
|
|
span_characteristics["avg_length"],
|
|
span_characteristics["avg_sd"],
|
|
span_characteristics["avg_bd"],
|
|
]
|
|
|
|
footer = (
|
|
["Wgt. Average"] + ["{:.2f}".format(round(f, 2)) for f in footer_data] + ["-"]
|
|
)
|
|
msg.table(
|
|
table,
|
|
footer=footer,
|
|
header=headers,
|
|
divider=True,
|
|
aligns=["l"] + ["r"] * (len(footer_data) + 1),
|
|
max_col=max_col,
|
|
)
|
|
|
|
|
|
def _get_spans_length_freq_dist(
|
|
length_dict: Dict, threshold=SPAN_LENGTH_THRESHOLD_PERCENTAGE
|
|
) -> Dict[int, float]:
|
|
"""Get frequency distribution of spans length under a certain threshold"""
|
|
all_span_lengths = []
|
|
for _, lengths in length_dict.items():
|
|
all_span_lengths.extend(lengths)
|
|
|
|
freq_dist: Counter = Counter()
|
|
for i in all_span_lengths:
|
|
if freq_dist.get(i):
|
|
freq_dist[i] += 1
|
|
else:
|
|
freq_dist[i] = 1
|
|
|
|
# We will be working with percentages instead of raw counts
|
|
freq_dist_percentage = {}
|
|
for span_length, count in freq_dist.most_common():
|
|
percentage = (count / len(all_span_lengths)) * 100.0
|
|
percentage = round(percentage, 2)
|
|
freq_dist_percentage[span_length] = percentage
|
|
|
|
return freq_dist_percentage
|
|
|
|
|
|
def _filter_spans_length_freq_dist(
|
|
freq_dist: Dict[int, float], threshold: int
|
|
) -> Dict[int, float]:
|
|
"""Filter frequency distribution with respect to a threshold
|
|
|
|
We're going to filter all the span lengths that fall
|
|
around a percentage threshold when summed.
|
|
"""
|
|
total = 0.0
|
|
filtered_freq_dist = {}
|
|
for span_length, dist in freq_dist.items():
|
|
if total >= threshold:
|
|
break
|
|
else:
|
|
filtered_freq_dist[span_length] = dist
|
|
total += dist
|
|
return filtered_freq_dist
|