mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-28 18:24:08 +03:00
eec5ccd72f
* `Language.update`: ensure that tok2vec gets updated The components in a pipeline can be updated independently. However, tok2vec implementations are an exception to this, since they depend on listeners for their gradients. The update method of a tok2vec implementation computes the tok2vec forward and passes this along with a backprop function to the listeners. This backprop function accumulates gradients for all the listeners. There are two ways in which the accumulated gradients can be used to update the tok2vec weights: 1. Call the `finish_update` method of tok2vec *after* the `update` method is called on all of the pipes that use a tok2vec listener. 2. Pass an optimizer to the `update` method of tok2vec. In this case, tok2vec will give the last listener a special backprop function that calls `finish_update` on the tok2vec. Unfortunately, `Language.update` did neither of these. Instead, it immediately called `finish_update` on every pipe after `update`. As a result, the tok2vec weights are updated when no gradients have been accumulated from listeners yet. And the gradients of the listeners are only used in the next call to `Language.update` (when `finish_update` is called on tok2vec again). This change fixes this issue by passing the optimizer to the `update` method of trainable pipes, leading to use of the second strategy outlined above. The main updating loop in `Language.update` is also simplified by using the `TrainableComponent` protocol consistently. * Train loop: `sgd` is `Optional[Optimizer]`, do not pass false * Language.update: call pipe finish_update after all pipe updates This does correct and fast updates if multiple components update the same parameters. * Add comment why we moved `finish_update` to a separate loop
377 lines
15 KiB
Python
377 lines
15 KiB
Python
from typing import List, Callable, Tuple, Dict, Iterable, Union, Any, IO
|
|
from typing import Optional, TYPE_CHECKING
|
|
from pathlib import Path
|
|
from timeit import default_timer as timer
|
|
from thinc.api import Optimizer, Config, constant, fix_random_seed, set_gpu_allocator
|
|
from wasabi import Printer
|
|
import random
|
|
import sys
|
|
import shutil
|
|
|
|
from .example import Example
|
|
from ..schemas import ConfigSchemaTraining
|
|
from ..errors import Errors
|
|
from ..util import resolve_dot_names, registry, logger
|
|
|
|
if TYPE_CHECKING:
|
|
from ..language import Language # noqa: F401
|
|
|
|
|
|
DIR_MODEL_BEST = "model-best"
|
|
DIR_MODEL_LAST = "model-last"
|
|
|
|
|
|
def train(
|
|
nlp: "Language",
|
|
output_path: Optional[Path] = None,
|
|
*,
|
|
use_gpu: int = -1,
|
|
stdout: IO = sys.stdout,
|
|
stderr: IO = sys.stderr,
|
|
) -> Tuple["Language", Optional[Path]]:
|
|
"""Train a pipeline.
|
|
|
|
nlp (Language): The initialized nlp object with the full config.
|
|
output_path (Optional[Path]): Optional output path to save trained model to.
|
|
use_gpu (int): Whether to train on GPU. Make sure to call require_gpu
|
|
before calling this function.
|
|
stdout (file): A file-like object to write output messages. To disable
|
|
printing, set to io.StringIO.
|
|
stderr (file): A second file-like object to write output messages. To disable
|
|
printing, set to io.StringIO.
|
|
|
|
RETURNS (tuple): The final nlp object and the path to the exported model.
|
|
"""
|
|
# We use no_print here so we can respect the stdout/stderr options.
|
|
msg = Printer(no_print=True)
|
|
# Create iterator, which yields out info after each optimization step.
|
|
config = nlp.config.interpolate()
|
|
if config["training"]["seed"] is not None:
|
|
fix_random_seed(config["training"]["seed"])
|
|
allocator = config["training"]["gpu_allocator"]
|
|
if use_gpu >= 0 and allocator:
|
|
set_gpu_allocator(allocator)
|
|
T = registry.resolve(config["training"], schema=ConfigSchemaTraining)
|
|
dot_names = [T["train_corpus"], T["dev_corpus"]]
|
|
train_corpus, dev_corpus = resolve_dot_names(config, dot_names)
|
|
optimizer = T["optimizer"]
|
|
score_weights = T["score_weights"]
|
|
batcher = T["batcher"]
|
|
train_logger = T["logger"]
|
|
before_to_disk = create_before_to_disk_callback(T["before_to_disk"])
|
|
before_update = T["before_update"]
|
|
|
|
# Helper function to save checkpoints. This is a closure for convenience,
|
|
# to avoid passing in all the args all the time.
|
|
def save_checkpoint(is_best):
|
|
with nlp.use_params(optimizer.averages):
|
|
before_to_disk(nlp).to_disk(output_path / DIR_MODEL_LAST)
|
|
if is_best:
|
|
# Avoid saving twice (saving will be more expensive than
|
|
# the dir copy)
|
|
if (output_path / DIR_MODEL_BEST).exists():
|
|
shutil.rmtree(output_path / DIR_MODEL_BEST)
|
|
shutil.copytree(output_path / DIR_MODEL_LAST, output_path / DIR_MODEL_BEST)
|
|
|
|
# Components that shouldn't be updated during training
|
|
frozen_components = T["frozen_components"]
|
|
# Components that should set annotations on update
|
|
annotating_components = T["annotating_components"]
|
|
# Create iterator, which yields out info after each optimization step.
|
|
training_step_iterator = train_while_improving(
|
|
nlp,
|
|
optimizer,
|
|
create_train_batches(nlp, train_corpus, batcher, T["max_epochs"]),
|
|
create_evaluation_callback(nlp, dev_corpus, score_weights),
|
|
dropout=T["dropout"],
|
|
accumulate_gradient=T["accumulate_gradient"],
|
|
patience=T["patience"],
|
|
max_steps=T["max_steps"],
|
|
eval_frequency=T["eval_frequency"],
|
|
exclude=frozen_components,
|
|
annotating_components=annotating_components,
|
|
before_update=before_update,
|
|
)
|
|
clean_output_dir(output_path)
|
|
stdout.write(msg.info(f"Pipeline: {nlp.pipe_names}") + "\n")
|
|
if frozen_components:
|
|
stdout.write(msg.info(f"Frozen components: {frozen_components}") + "\n")
|
|
if annotating_components:
|
|
stdout.write(
|
|
msg.info(f"Set annotations on update for: {annotating_components}") + "\n"
|
|
)
|
|
stdout.write(msg.info(f"Initial learn rate: {optimizer.learn_rate(step=0)}") + "\n")
|
|
with nlp.select_pipes(disable=frozen_components):
|
|
log_step, finalize_logger = train_logger(nlp, stdout, stderr)
|
|
try:
|
|
for batch, info, is_best_checkpoint in training_step_iterator:
|
|
if is_best_checkpoint is not None:
|
|
with nlp.select_pipes(disable=frozen_components):
|
|
update_meta(T, nlp, info)
|
|
if output_path is not None:
|
|
save_checkpoint(is_best_checkpoint)
|
|
info["output_path"] = str(output_path / DIR_MODEL_LAST)
|
|
log_step(info if is_best_checkpoint is not None else None)
|
|
except Exception as e:
|
|
if output_path is not None:
|
|
stdout.write(
|
|
msg.warn(
|
|
f"Aborting and saving the final best model. "
|
|
f"Encountered exception: {repr(e)}"
|
|
)
|
|
+ "\n"
|
|
)
|
|
raise e
|
|
finally:
|
|
finalize_logger()
|
|
if output_path is not None:
|
|
save_checkpoint(False)
|
|
# This will only run if we did't hit an error
|
|
if optimizer.averages:
|
|
nlp.use_params(optimizer.averages)
|
|
if output_path is not None:
|
|
stdout.write(
|
|
msg.good("Saved pipeline to output directory", output_path / DIR_MODEL_LAST)
|
|
+ "\n"
|
|
)
|
|
return (nlp, output_path / DIR_MODEL_LAST)
|
|
else:
|
|
return (nlp, None)
|
|
|
|
|
|
def train_while_improving(
|
|
nlp: "Language",
|
|
optimizer: Optimizer,
|
|
train_data,
|
|
evaluate,
|
|
*,
|
|
dropout: float,
|
|
eval_frequency: int,
|
|
accumulate_gradient: int,
|
|
patience: int,
|
|
max_steps: int,
|
|
exclude: List[str],
|
|
annotating_components: List[str],
|
|
before_update: Optional[Callable[["Language", Dict[str, Any]], None]],
|
|
):
|
|
"""Train until an evaluation stops improving. Works as a generator,
|
|
with each iteration yielding a tuple `(batch, info, is_best_checkpoint)`,
|
|
where info is a dict, and is_best_checkpoint is in [True, False, None] --
|
|
None indicating that the iteration was not evaluated as a checkpoint.
|
|
The evaluation is conducted by calling the evaluate callback.
|
|
|
|
Positional arguments:
|
|
nlp: The spaCy pipeline to evaluate.
|
|
optimizer: The optimizer callable.
|
|
train_data (Iterable[Batch]): A generator of batches, with the training
|
|
data. Each batch should be a Sized[Tuple[Input, Annot]]. The training
|
|
data iterable needs to take care of iterating over the epochs and
|
|
shuffling.
|
|
evaluate (Callable[[], Tuple[float, Any]]): A callback to perform evaluation.
|
|
The callback should take no arguments and return a tuple
|
|
`(main_score, other_scores)`. The main_score should be a float where
|
|
higher is better. other_scores can be any object.
|
|
|
|
Every iteration, the function yields out a tuple with:
|
|
|
|
* batch: A list of Example objects.
|
|
* info: A dict with various information about the last update (see below).
|
|
* is_best_checkpoint: A value in None, False, True, indicating whether this
|
|
was the best evaluation so far. You should use this to save the model
|
|
checkpoints during training. If None, evaluation was not conducted on
|
|
that iteration. False means evaluation was conducted, but a previous
|
|
evaluation was better.
|
|
|
|
The info dict provides the following information:
|
|
|
|
epoch (int): How many passes over the data have been completed.
|
|
step (int): How many steps have been completed.
|
|
score (float): The main score from the last evaluation.
|
|
other_scores: : The other scores from the last evaluation.
|
|
losses: The accumulated losses throughout training.
|
|
checkpoints: A list of previous results, where each result is a
|
|
(score, step, epoch) tuple.
|
|
"""
|
|
if isinstance(dropout, float):
|
|
dropouts = constant(dropout)
|
|
else:
|
|
dropouts = dropout
|
|
results = []
|
|
losses: Dict[str, float] = {}
|
|
words_seen = 0
|
|
start_time = timer()
|
|
for step, (epoch, batch) in enumerate(train_data):
|
|
if before_update:
|
|
before_update_args = {"step": step, "epoch": epoch}
|
|
before_update(nlp, before_update_args)
|
|
dropout = dropouts(optimizer.step) # type: ignore
|
|
for subbatch in subdivide_batch(batch, accumulate_gradient):
|
|
nlp.update(
|
|
subbatch,
|
|
drop=dropout,
|
|
losses=losses,
|
|
sgd=None,
|
|
exclude=exclude,
|
|
annotates=annotating_components,
|
|
)
|
|
# TODO: refactor this so we don't have to run it separately in here
|
|
for name, proc in nlp.pipeline:
|
|
if (
|
|
name not in exclude
|
|
and hasattr(proc, "is_trainable")
|
|
and proc.is_trainable
|
|
and proc.model not in (True, False, None) # type: ignore[attr-defined]
|
|
):
|
|
proc.finish_update(optimizer) # type: ignore[attr-defined]
|
|
optimizer.step_schedules()
|
|
if not (step % eval_frequency):
|
|
if optimizer.averages:
|
|
with nlp.use_params(optimizer.averages):
|
|
score, other_scores = evaluate()
|
|
else:
|
|
score, other_scores = evaluate()
|
|
optimizer.last_score = score
|
|
results.append((score, step))
|
|
is_best_checkpoint = score == max(results)[0]
|
|
else:
|
|
score, other_scores = (None, None)
|
|
is_best_checkpoint = None
|
|
words_seen += sum(len(eg) for eg in batch)
|
|
info = {
|
|
"epoch": epoch,
|
|
"step": step,
|
|
"score": score,
|
|
"other_scores": other_scores,
|
|
"losses": losses,
|
|
"checkpoints": results,
|
|
"seconds": int(timer() - start_time),
|
|
"words": words_seen,
|
|
}
|
|
yield batch, info, is_best_checkpoint
|
|
if is_best_checkpoint is not None:
|
|
losses = {}
|
|
# Stop if no improvement in `patience` updates (if specified)
|
|
# Negate step value so that the earliest best step is chosen for the
|
|
# same score, i.e. (1.0, 100) is chosen over (1.0, 200)
|
|
best_result = max((r_score, -r_step) for r_score, r_step in results)
|
|
best_step = -best_result[1]
|
|
if patience and (step - best_step) >= patience:
|
|
break
|
|
# Stop if we've exhausted our max steps (if specified)
|
|
if max_steps and step >= max_steps:
|
|
break
|
|
|
|
|
|
def subdivide_batch(batch, accumulate_gradient):
|
|
batch = list(batch)
|
|
batch.sort(key=lambda eg: len(eg.predicted))
|
|
sub_len = len(batch) // accumulate_gradient
|
|
start = 0
|
|
for i in range(accumulate_gradient):
|
|
subbatch = batch[start : start + sub_len]
|
|
if subbatch:
|
|
yield subbatch
|
|
start += len(subbatch)
|
|
subbatch = batch[start:]
|
|
if subbatch:
|
|
yield subbatch
|
|
|
|
|
|
def create_evaluation_callback(
|
|
nlp: "Language", dev_corpus: Callable, weights: Dict[str, float]
|
|
) -> Callable[[], Tuple[float, Dict[str, float]]]:
|
|
weights = {key: value for key, value in weights.items() if value is not None}
|
|
|
|
def evaluate() -> Tuple[float, Dict[str, float]]:
|
|
nonlocal weights
|
|
try:
|
|
scores = nlp.evaluate(dev_corpus(nlp))
|
|
except KeyError as e:
|
|
raise KeyError(Errors.E900.format(pipeline=nlp.pipe_names)) from e
|
|
# Calculate a weighted sum based on score_weights for the main score.
|
|
# We can only consider scores that are ints/floats, not dicts like
|
|
# entity scores per type etc.
|
|
scores = {key: value for key, value in scores.items() if value is not None}
|
|
weights = {key: value for key, value in weights.items() if key in scores}
|
|
for key, value in scores.items():
|
|
if key in weights and not isinstance(value, (int, float)):
|
|
raise ValueError(Errors.E915.format(name=key, score_type=type(value)))
|
|
try:
|
|
weighted_score = sum(
|
|
scores.get(s, 0.0) * weights.get(s, 0.0) for s in weights
|
|
)
|
|
except KeyError as e:
|
|
keys = list(scores.keys())
|
|
err = Errors.E983.format(dict="score_weights", key=str(e), keys=keys)
|
|
raise KeyError(err) from None
|
|
return weighted_score, scores
|
|
|
|
return evaluate
|
|
|
|
|
|
def create_train_batches(
|
|
nlp: "Language",
|
|
corpus: Callable[["Language"], Iterable[Example]],
|
|
batcher: Callable[[Iterable[Example]], Iterable[Example]],
|
|
max_epochs: int,
|
|
):
|
|
epoch = 0
|
|
if max_epochs >= 0:
|
|
examples = list(corpus(nlp)) # type: Iterable[Example]
|
|
if not examples:
|
|
# Raise error if no data
|
|
raise ValueError(Errors.E986)
|
|
while max_epochs < 1 or epoch != max_epochs:
|
|
if max_epochs >= 0:
|
|
random.shuffle(examples) # type: ignore
|
|
else:
|
|
examples = corpus(nlp)
|
|
for batch in batcher(examples):
|
|
yield epoch, batch
|
|
epoch += 1
|
|
|
|
|
|
def update_meta(
|
|
training: Union[Dict[str, Any], Config], nlp: "Language", info: Dict[str, Any]
|
|
) -> None:
|
|
nlp.meta["performance"] = {}
|
|
for metric in training["score_weights"]:
|
|
if metric is not None:
|
|
nlp.meta["performance"][metric] = info["other_scores"].get(metric, 0.0)
|
|
for pipe_name in nlp.pipe_names:
|
|
if pipe_name in info["losses"]:
|
|
nlp.meta["performance"][f"{pipe_name}_loss"] = info["losses"][pipe_name]
|
|
|
|
|
|
def create_before_to_disk_callback(
|
|
callback: Optional[Callable[["Language"], "Language"]]
|
|
) -> Callable[["Language"], "Language"]:
|
|
from ..language import Language # noqa: F811
|
|
|
|
def before_to_disk(nlp: Language) -> Language:
|
|
if not callback:
|
|
return nlp
|
|
modified_nlp = callback(nlp)
|
|
if not isinstance(modified_nlp, Language):
|
|
err = Errors.E914.format(name="before_to_disk", value=type(modified_nlp))
|
|
raise ValueError(err)
|
|
return modified_nlp
|
|
|
|
return before_to_disk
|
|
|
|
|
|
def clean_output_dir(path: Optional[Path]) -> None:
|
|
"""Remove an existing output directory. Typically used to ensure that that
|
|
a directory like model-best and its contents aren't just being overwritten
|
|
by nlp.to_disk, which could preserve existing subdirectories (e.g.
|
|
components that don't exist anymore).
|
|
"""
|
|
if path is not None and path.exists():
|
|
for subdir in [path / DIR_MODEL_BEST, path / DIR_MODEL_LAST]:
|
|
if subdir.exists():
|
|
try:
|
|
shutil.rmtree(str(subdir))
|
|
logger.debug(f"Removed existing output directory: {subdir}")
|
|
except Exception as e:
|
|
raise IOError(Errors.E901.format(path=path)) from e
|