mirror of
https://github.com/explosion/spaCy.git
synced 2024-12-26 01:46:28 +03:00
d33953037e
* Create aryaprabhudesai.md (#2681) * Update _install.jade (#2688) Typo fix: "models" -> "model" * Add FAC to spacy.explain (resolves #2706) * Remove docstrings for deprecated arguments (see #2703) * When calling getoption() in conftest.py, pass a default option (#2709) * When calling getoption() in conftest.py, pass a default option This is necessary to allow testing an installed spacy by running: pytest --pyargs spacy * Add contributor agreement * update bengali token rules for hyphen and digits (#2731) * Less norm computations in token similarity (#2730) * Less norm computations in token similarity * Contributor agreement * Remove ')' for clarity (#2737) Sorry, don't mean to be nitpicky, I just noticed this when going through the CLI and thought it was a quick fix. That said, if this was intention than please let me know. * added contributor agreement for mbkupfer (#2738) * Basic support for Telugu language (#2751) * Lex _attrs for polish language (#2750) * Signed spaCy contributor agreement * Added polish version of english lex_attrs * Introduces a bulk merge function, in order to solve issue #653 (#2696) * Fix comment * Introduce bulk merge to increase performance on many span merges * Sign contributor agreement * Implement pull request suggestions * Describe converters more explicitly (see #2643) * Add multi-threading note to Language.pipe (resolves #2582) [ci skip] * Fix formatting * Fix dependency scheme docs (closes #2705) [ci skip] * Don't set stop word in example (closes #2657) [ci skip] * Add words to portuguese language _num_words (#2759) * Add words to portuguese language _num_words * Add words to portuguese language _num_words * Update Indonesian model (#2752) * adding e-KTP in tokenizer exceptions list * add exception token * removing lines with containing space as it won't matter since we use .split() method in the end, added new tokens in exception * add tokenizer exceptions list * combining base_norms with norm_exceptions * adding norm_exception * fix double key in lemmatizer * remove unused import on punctuation.py * reformat stop_words to reduce number of lines, improve readibility * updating tokenizer exception * implement is_currency for lang/id * adding orth_first_upper in tokenizer_exceptions * update the norm_exception list * remove bunch of abbreviations * adding contributors file * Fixed spaCy+Keras example (#2763) * bug fixes in keras example * created contributor agreement * Adding French hyphenated first name (#2786) * Fix typo (closes #2784) * Fix typo (#2795) [ci skip] Fixed typo on line 6 "regcognizer --> recognizer" * Adding basic support for Sinhala language. (#2788) * adding Sinhala language package, stop words, examples and lex_attrs. * Adding contributor agreement * Updating contributor agreement * Also include lowercase norm exceptions * Fix error (#2802) * Fix error ValueError: cannot resize an array that references or is referenced by another array in this way. Use the resize function * added spaCy Contributor Agreement * Add charlax's contributor agreement (#2805) * agreement of contributor, may I introduce a tiny pl languge contribution (#2799) * Contributors agreement * Contributors agreement * Contributors agreement * Add jupyter=True to displacy.render in documentation (#2806) * Revert "Also include lowercase norm exceptions" This reverts commit70f4e8adf3
. * Remove deprecated encoding argument to msgpack * Set up dependency tree pattern matching skeleton (#2732) * Fix bug when too many entity types. Fixes #2800 * Fix Python 2 test failure * Require older msgpack-numpy * Restore encoding arg on msgpack-numpy * Try to fix version pin for msgpack-numpy * Update Portuguese Language (#2790) * Add words to portuguese language _num_words * Add words to portuguese language _num_words * Portuguese - Add/remove stopwords, fix tokenizer, add currency symbols * Extended punctuation and norm_exceptions in the Portuguese language * Correct error in spacy universe docs concerning spacy-lookup (#2814) * Update Keras Example for (Parikh et al, 2016) implementation (#2803) * bug fixes in keras example * created contributor agreement * baseline for Parikh model * initial version of parikh 2016 implemented * tested asymmetric models * fixed grevious error in normalization * use standard SNLI test file * begin to rework parikh example * initial version of running example * start to document the new version * start to document the new version * Update Decompositional Attention.ipynb * fixed calls to similarity * updated the README * import sys package duh * simplified indexing on mapping word to IDs * stupid python indent error * added code from https://github.com/tensorflow/tensorflow/issues/3388 for tf bug workaround * Fix typo (closes #2815) [ci skip] * Update regex version dependency * Set version to 2.0.13.dev3 * Skip seemingly problematic test * Remove problematic test * Try previous version of regex * Revert "Remove problematic test" This reverts commitbdebbef455
. * Unskip test * Try older version of regex * 💫 Update training examples and use minibatching (#2830) <!--- Provide a general summary of your changes in the title. --> ## Description Update the training examples in `/examples/training` to show usage of spaCy's `minibatch` and `compounding` helpers ([see here](https://spacy.io/usage/training#tips-batch-size) for details). The lack of batching in the examples has caused some confusion in the past, especially for beginners who would copy-paste the examples, update them with large training sets and experienced slow and unsatisfying results. ### Types of change enhancements ## Checklist <!--- Before you submit the PR, go over this checklist and make sure you can tick off all the boxes. [] -> [x] --> - [x] I have submitted the spaCy Contributor Agreement. - [x] I ran the tests, and all new and existing tests passed. - [x] My changes don't require a change to the documentation, or if they do, I've added all required information. * Visual C++ link updated (#2842) (closes #2841) [ci skip] * New landing page * Add contribution agreement * Correcting lang/ru/examples.py (#2845) * Correct some grammatical inaccuracies in lang\ru\examples.py; filled Contributor Agreement * Correct some grammatical inaccuracies in lang\ru\examples.py * Move contributor agreement to separate file * Set version to 2.0.13.dev4 * Add Persian(Farsi) language support (#2797) * Also include lowercase norm exceptions * Remove in favour of https://github.com/explosion/spaCy/graphs/contributors * Rule-based French Lemmatizer (#2818) <!--- Provide a general summary of your changes in the title. --> ## Description <!--- Use this section to describe your changes. If your changes required testing, include information about the testing environment and the tests you ran. If your test fixes a bug reported in an issue, don't forget to include the issue number. If your PR is still a work in progress, that's totally fine – just include a note to let us know. --> Add a rule-based French Lemmatizer following the english one and the excellent PR for [greek language optimizations](https://github.com/explosion/spaCy/pull/2558) to adapt the Lemmatizer class. ### Types of change <!-- What type of change does your PR cover? Is it a bug fix, an enhancement or new feature, or a change to the documentation? --> - Lemma dictionary used can be found [here](http://infolingu.univ-mlv.fr/DonneesLinguistiques/Dictionnaires/telechargement.html), I used the XML version. - Add several files containing exhaustive list of words for each part of speech - Add some lemma rules - Add POS that are not checked in the standard Lemmatizer, i.e PRON, DET, ADV and AUX - Modify the Lemmatizer class to check in lookup table as a last resort if POS not mentionned - Modify the lemmatize function to check in lookup table as a last resort - Init files are updated so the model can support all the functionalities mentioned above - Add words to tokenizer_exceptions_list.py in respect to regex used in tokenizer_exceptions.py ## Checklist <!--- Before you submit the PR, go over this checklist and make sure you can tick off all the boxes. [] -> [x] --> - [X] I have submitted the spaCy Contributor Agreement. - [X] I ran the tests, and all new and existing tests passed. - [X] My changes don't require a change to the documentation, or if they do, I've added all required information. * Set version to 2.0.13 * Fix formatting and consistency * Update docs for new version [ci skip] * Increment version [ci skip] * Add info on wheels [ci skip] * Adding "This is a sentence" example to Sinhala (#2846) * Add wheels badge * Update badge [ci skip] * Update README.rst [ci skip] * Update murmurhash pin * Increment version to 2.0.14.dev0 * Update GPU docs for v2.0.14 * Add wheel to setup_requires * Import prefer_gpu and require_gpu functions from Thinc * Add tests for prefer_gpu() and require_gpu() * Update requirements and setup.py * Workaround bug in thinc require_gpu * Set version to v2.0.14 * Update push-tag script * Unhack prefer_gpu * Require thinc 6.10.6 * Update prefer_gpu and require_gpu docs [ci skip] * Fix specifiers for GPU * Set version to 2.0.14.dev1 * Set version to 2.0.14 * Update Thinc version pin * Increment version * Fix msgpack-numpy version pin * Increment version * Update version to 2.0.16 * Update version [ci skip] * Redundant ')' in the Stop words' example (#2856) <!--- Provide a general summary of your changes in the title. --> ## Description <!--- Use this section to describe your changes. If your changes required testing, include information about the testing environment and the tests you ran. If your test fixes a bug reported in an issue, don't forget to include the issue number. If your PR is still a work in progress, that's totally fine – just include a note to let us know. --> ### Types of change <!-- What type of change does your PR cover? Is it a bug fix, an enhancement or new feature, or a change to the documentation? --> ## Checklist <!--- Before you submit the PR, go over this checklist and make sure you can tick off all the boxes. [] -> [x] --> - [ ] I have submitted the spaCy Contributor Agreement. - [ ] I ran the tests, and all new and existing tests passed. - [ ] My changes don't require a change to the documentation, or if they do, I've added all required information. * Documentation improvement regarding joblib and SO (#2867) Some documentation improvements ## Description 1. Fixed the dead URL to joblib 2. Fixed Stack Overflow brand name (with space) ### Types of change Documentation ## Checklist <!--- Before you submit the PR, go over this checklist and make sure you can tick off all the boxes. [] -> [x] --> - [x] I have submitted the spaCy Contributor Agreement. - [x] I ran the tests, and all new and existing tests passed. - [x] My changes don't require a change to the documentation, or if they do, I've added all required information. * raise error when setting overlapping entities as doc.ents (#2880) * Fix out-of-bounds access in NER training The helper method state.B(1) gets the index of the first token of the buffer, or -1 if no such token exists. Normally this is safe because we pass this to functions like state.safe_get(), which returns an empty token. Here we used it directly as an array index, which is not okay! This error may have been the cause of out-of-bounds access errors during training. Similar errors may still be around, so much be hunted down. Hunting this one down took a long time...I printed out values across training runs and diffed, looking for points of divergence between runs, when no randomness should be allowed. * Change PyThaiNLP Url (#2876) * Fix missing comma * Add example showing a fix-up rule for space entities * Set version to 2.0.17.dev0 * Update regex version * Revert "Update regex version" This reverts commit62358dd867
. * Try setting older regex version, to align with conda * Set version to 2.0.17 * Add spacy-js to universe [ci-skip] * Add spacy-raspberry to universe (closes #2889) * Add script to validate universe json [ci skip] * Removed space in docs + added contributor indo (#2909) * - removed unneeded space in documentation * - added contributor info * Allow input text of length up to max_length, inclusive (#2922) * Include universe spec for spacy-wordnet component (#2919) * feat: include universe spec for spacy-wordnet component * chore: include spaCy contributor agreement * Minor formatting changes [ci skip] * Fix image [ci skip] Twitter URL doesn't work on live site * Check if the word is in one of the regular lists specific to each POS (#2886) * 💫 Create random IDs for SVGs to prevent ID clashes (#2927) Resolves #2924. ## Description Fixes problem where multiple visualizations in Jupyter notebooks would have clashing arc IDs, resulting in weirdly positioned arc labels. Generating a random ID prefix so even identical parses won't receive the same IDs for consistency (even if effect of ID clash isn't noticable here.) ### Types of change bug fix ## Checklist <!--- Before you submit the PR, go over this checklist and make sure you can tick off all the boxes. [] -> [x] --> - [x] I have submitted the spaCy Contributor Agreement. - [x] I ran the tests, and all new and existing tests passed. - [x] My changes don't require a change to the documentation, or if they do, I've added all required information. * Fix typo [ci skip] * fixes symbolic link on py3 and windows (#2949) * fixes symbolic link on py3 and windows during setup of spacy using command python -m spacy link en_core_web_sm en closes #2948 * Update spacy/compat.py Co-Authored-By: cicorias <cicorias@users.noreply.github.com> * Fix formatting * Update universe [ci skip] * Catalan Language Support (#2940) * Catalan language Support * Ddding Catalan to documentation * Sort languages alphabetically [ci skip] * Update tests for pytest 4.x (#2965) <!--- Provide a general summary of your changes in the title. --> ## Description - [x] Replace marks in params for pytest 4.0 compat ([see here](https://docs.pytest.org/en/latest/deprecations.html#marks-in-pytest-mark-parametrize)) - [x] Un-xfail passing tests (some fixes in a recent update resolved a bunch of issues, but tests were apparently never updated here) ### Types of change <!-- What type of change does your PR cover? Is it a bug fix, an enhancement or new feature, or a change to the documentation? --> ## Checklist <!--- Before you submit the PR, go over this checklist and make sure you can tick off all the boxes. [] -> [x] --> - [x] I have submitted the spaCy Contributor Agreement. - [x] I ran the tests, and all new and existing tests passed. - [x] My changes don't require a change to the documentation, or if they do, I've added all required information. * Fix regex pin to harmonize with conda (#2964) * Update README.rst * Fix bug where Vocab.prune_vector did not use 'batch_size' (#2977) Fixes #2976 * Fix typo * Fix typo * Remove duplicate file * Require thinc 7.0.0.dev2 Fixes bug in gpu_ops that would use cupy instead of numpy on CPU * Add missing import * Fix error IDs * Fix tests
828 lines
24 KiB
Plaintext
828 lines
24 KiB
Plaintext
//- 💫 DOCS > API > DOC
|
||
|
||
include ../_includes/_mixins
|
||
|
||
p
|
||
| A #[code Doc] is a sequence of #[+api("token") #[code Token]] objects.
|
||
| Access sentences and named entities, export annotations to numpy arrays,
|
||
| losslessly serialize to compressed binary strings. The #[code Doc] object
|
||
| holds an array of #[code TokenC] structs. The Python-level #[code Token]
|
||
| and #[+api("span") #[code Span]] objects are views of this array, i.e.
|
||
| they don't own the data themselves.
|
||
|
||
+aside-code("Example").
|
||
# Construction 1
|
||
doc = nlp(u'Some text')
|
||
|
||
# Construction 2
|
||
from spacy.tokens import Doc
|
||
doc = Doc(nlp.vocab, words=[u'hello', u'world', u'!'],
|
||
spaces=[True, False, False])
|
||
|
||
+h(2, "init") Doc.__init__
|
||
+tag method
|
||
|
||
p
|
||
| Construct a #[code Doc] object. The most common way to get a #[code Doc]
|
||
| object is via the #[code nlp] object.
|
||
|
||
+table(["Name", "Type", "Description"])
|
||
+row
|
||
+cell #[code vocab]
|
||
+cell #[code Vocab]
|
||
+cell A storage container for lexical types.
|
||
|
||
+row
|
||
+cell #[code words]
|
||
+cell -
|
||
+cell A list of strings to add to the container.
|
||
|
||
+row
|
||
+cell #[code spaces]
|
||
+cell -
|
||
+cell
|
||
| A list of boolean values indicating whether each word has a
|
||
| subsequent space. Must have the same length as #[code words], if
|
||
| specified. Defaults to a sequence of #[code True].
|
||
|
||
+row("foot")
|
||
+cell returns
|
||
+cell #[code Doc]
|
||
+cell The newly constructed object.
|
||
|
||
+h(2, "getitem") Doc.__getitem__
|
||
+tag method
|
||
|
||
p
|
||
| Get a #[+api("token") #[code Token]] object at position #[code i], where
|
||
| #[code i] is an integer. Negative indexing is supported, and follows the
|
||
| usual Python semantics, i.e. #[code doc[-2]] is #[code doc[len(doc) - 2]].
|
||
|
||
+aside-code("Example").
|
||
doc = nlp(u'Give it back! He pleaded.')
|
||
assert doc[0].text == 'Give'
|
||
assert doc[-1].text == '.'
|
||
span = doc[1:3]
|
||
assert span.text == 'it back'
|
||
|
||
+table(["Name", "Type", "Description"])
|
||
+row
|
||
+cell #[code i]
|
||
+cell int
|
||
+cell The index of the token.
|
||
|
||
+row("foot")
|
||
+cell returns
|
||
+cell #[code Token]
|
||
+cell The token at #[code doc[i]].
|
||
|
||
p
|
||
| Get a #[+api("span") #[code Span]] object, starting at position
|
||
| #[code start] (token index) and ending at position #[code end] (token
|
||
| index).
|
||
|
||
p
|
||
| For instance, #[code doc[2:5]] produces a span consisting of tokens 2, 3
|
||
| and 4. Stepped slices (e.g. #[code doc[start : end : step]]) are not
|
||
| supported, as #[code Span] objects must be contiguous (cannot have gaps).
|
||
| You can use negative indices and open-ended ranges, which have their
|
||
| normal Python semantics.
|
||
|
||
+table(["Name", "Type", "Description"])
|
||
+row
|
||
+cell #[code start_end]
|
||
+cell tuple
|
||
+cell The slice of the document to get.
|
||
|
||
+row("foot")
|
||
+cell returns
|
||
+cell #[code Span]
|
||
+cell The span at #[code doc[start : end]].
|
||
|
||
+h(2, "iter") Doc.__iter__
|
||
+tag method
|
||
|
||
p
|
||
| Iterate over #[code Token] objects, from which the annotations can be
|
||
| easily accessed.
|
||
|
||
+aside-code("Example").
|
||
doc = nlp(u'Give it back')
|
||
assert [t.text for t in doc] == [u'Give', u'it', u'back']
|
||
|
||
p
|
||
| This is the main way of accessing #[+api("token") #[code Token]] objects,
|
||
| which are the main way annotations are accessed from Python. If
|
||
| faster-than-Python speeds are required, you can instead access the
|
||
| annotations as a numpy array, or access the underlying C data directly
|
||
| from Cython.
|
||
|
||
+table(["Name", "Type", "Description"])
|
||
+row("foot")
|
||
+cell yields
|
||
+cell #[code Token]
|
||
+cell A #[code Token] object.
|
||
|
||
+h(2, "len") Doc.__len__
|
||
+tag method
|
||
|
||
p Get the number of tokens in the document.
|
||
|
||
+aside-code("Example").
|
||
doc = nlp(u'Give it back! He pleaded.')
|
||
assert len(doc) == 7
|
||
|
||
+table(["Name", "Type", "Description"])
|
||
+row("foot")
|
||
+cell returns
|
||
+cell int
|
||
+cell The number of tokens in the document.
|
||
|
||
+h(2, "set_extension") Doc.set_extension
|
||
+tag classmethod
|
||
+tag-new(2)
|
||
|
||
p
|
||
| Define a custom attribute on the #[code Doc] which becomes available via
|
||
| #[code Doc._]. For details, see the documentation on
|
||
| #[+a("/usage/processing-pipelines#custom-components-attributes") custom attributes].
|
||
|
||
+aside-code("Example").
|
||
from spacy.tokens import Doc
|
||
city_getter = lambda doc: any(city in doc.text for city in ('New York', 'Paris', 'Berlin'))
|
||
Doc.set_extension('has_city', getter=city_getter)
|
||
doc = nlp(u'I like New York')
|
||
assert doc._.has_city
|
||
|
||
+table(["Name", "Type", "Description"])
|
||
+row
|
||
+cell #[code name]
|
||
+cell unicode
|
||
+cell
|
||
| Name of the attribute to set by the extension. For example,
|
||
| #[code 'my_attr'] will be available as #[code doc._.my_attr].
|
||
|
||
+row
|
||
+cell #[code default]
|
||
+cell -
|
||
+cell
|
||
| Optional default value of the attribute if no getter or method
|
||
| is defined.
|
||
|
||
+row
|
||
+cell #[code method]
|
||
+cell callable
|
||
+cell
|
||
| Set a custom method on the object, for example
|
||
| #[code doc._.compare(other_doc)].
|
||
|
||
+row
|
||
+cell #[code getter]
|
||
+cell callable
|
||
+cell
|
||
| Getter function that takes the object and returns an attribute
|
||
| value. Is called when the user accesses the #[code ._] attribute.
|
||
|
||
+row
|
||
+cell #[code setter]
|
||
+cell callable
|
||
+cell
|
||
| Setter function that takes the #[code Doc] and a value, and
|
||
| modifies the object. Is called when the user writes to the
|
||
| #[code Doc._] attribute.
|
||
|
||
+h(2, "get_extension") Doc.get_extension
|
||
+tag classmethod
|
||
+tag-new(2)
|
||
|
||
p
|
||
| Look up a previously registered extension by name. Returns a 4-tuple
|
||
| #[code.u-break (default, method, getter, setter)] if the extension is
|
||
| registered. Raises a #[code KeyError] otherwise.
|
||
|
||
+aside-code("Example").
|
||
from spacy.tokens import Doc
|
||
Doc.set_extension('has_city', default=False)
|
||
extension = Doc.get_extension('has_city')
|
||
assert extension == (False, None, None, None)
|
||
|
||
+table(["Name", "Type", "Description"])
|
||
+row
|
||
+cell #[code name]
|
||
+cell unicode
|
||
+cell Name of the extension.
|
||
|
||
+row("foot")
|
||
+cell returns
|
||
+cell tuple
|
||
+cell
|
||
| A #[code.u-break (default, method, getter, setter)] tuple of the
|
||
| extension.
|
||
|
||
+h(2, "has_extension") Doc.has_extension
|
||
+tag classmethod
|
||
+tag-new(2)
|
||
|
||
p Check whether an extension has been registered on the #[code Doc] class.
|
||
|
||
+aside-code("Example").
|
||
from spacy.tokens import Doc
|
||
Doc.set_extension('has_city', default=False)
|
||
assert Doc.has_extension('has_city')
|
||
|
||
+table(["Name", "Type", "Description"])
|
||
+row
|
||
+cell #[code name]
|
||
+cell unicode
|
||
+cell Name of the extension to check.
|
||
|
||
+row("foot")
|
||
+cell returns
|
||
+cell bool
|
||
+cell Whether the extension has been registered.
|
||
|
||
+h(2, "remove_extension") Doc.remove_extension
|
||
+tag classmethod
|
||
+tag-new("2.0.12")
|
||
|
||
p Remove a previously registered extension.
|
||
|
||
+aside-code("Example").
|
||
from spacy.tokens import Doc
|
||
Doc.set_extension('has_city', default=False)
|
||
removed = Doc.remove_extension('has_city')
|
||
assert not Doc.has_extension('has_city')
|
||
|
||
+table(["Name", "Type", "Description"])
|
||
+row
|
||
+cell #[code name]
|
||
+cell unicode
|
||
+cell Name of the extension.
|
||
|
||
+row("foot")
|
||
+cell returns
|
||
+cell tuple
|
||
+cell
|
||
| A #[code.u-break (default, method, getter, setter)] tuple of the
|
||
| removed extension.
|
||
|
||
+h(2, "char_span") Doc.char_span
|
||
+tag method
|
||
+tag-new(2)
|
||
|
||
p
|
||
| Create a #[code Span] object from the slice #[code doc.text[start : end]].
|
||
| Returns #[code None] if the character indices don't map to a valid span.
|
||
|
||
+aside-code("Example").
|
||
doc = nlp(u'I like New York')
|
||
span = doc.char_span(7, 15, label=u'GPE')
|
||
assert span.text == 'New York'
|
||
|
||
+table(["Name", "Type", "Description"])
|
||
+row
|
||
+cell #[code start]
|
||
+cell int
|
||
+cell The index of the first character of the span.
|
||
|
||
+row
|
||
+cell #[code end]
|
||
+cell int
|
||
+cell The index of the last character after the span.
|
||
|
||
+row
|
||
+cell #[code label]
|
||
+cell uint64 / unicode
|
||
+cell A label to attach to the Span, e.g. for named entities.
|
||
|
||
+row
|
||
+cell #[code vector]
|
||
+cell #[code.u-break numpy.ndarray[ndim=1, dtype='float32']]
|
||
+cell A meaning representation of the span.
|
||
|
||
+row("foot")
|
||
+cell returns
|
||
+cell #[code Span]
|
||
+cell The newly constructed object or #[code None].
|
||
|
||
+h(2, "similarity") Doc.similarity
|
||
+tag method
|
||
+tag-model("vectors")
|
||
|
||
p
|
||
| Make a semantic similarity estimate. The default estimate is cosine
|
||
| similarity using an average of word vectors.
|
||
|
||
+aside-code("Example").
|
||
apples = nlp(u'I like apples')
|
||
oranges = nlp(u'I like oranges')
|
||
apples_oranges = apples.similarity(oranges)
|
||
oranges_apples = oranges.similarity(apples)
|
||
assert apples_oranges == oranges_apples
|
||
|
||
+table(["Name", "Type", "Description"])
|
||
+row
|
||
+cell #[code other]
|
||
+cell -
|
||
+cell
|
||
| The object to compare with. By default, accepts #[code Doc],
|
||
| #[code Span], #[code Token] and #[code Lexeme] objects.
|
||
|
||
+row("foot")
|
||
+cell returns
|
||
+cell float
|
||
+cell A scalar similarity score. Higher is more similar.
|
||
|
||
+h(2, "count_by") Doc.count_by
|
||
+tag method
|
||
|
||
p
|
||
| Count the frequencies of a given attribute. Produces a dict of
|
||
| #[code {attr (int): count (ints)}] frequencies, keyed by the values
|
||
| of the given attribute ID.
|
||
|
||
+aside-code("Example").
|
||
from spacy.attrs import ORTH
|
||
doc = nlp(u'apple apple orange banana')
|
||
assert doc.count_by(ORTH) == {7024L: 1, 119552L: 1, 2087L: 2}
|
||
doc.to_array([attrs.ORTH])
|
||
# array([[11880], [11880], [7561], [12800]])
|
||
|
||
+table(["Name", "Type", "Description"])
|
||
+row
|
||
+cell #[code attr_id]
|
||
+cell int
|
||
+cell The attribute ID
|
||
|
||
+row("foot")
|
||
+cell returns
|
||
+cell dict
|
||
+cell A dictionary mapping attributes to integer counts.
|
||
|
||
+h(2, "get_lca_matrix") Doc.get_lca_matrix
|
||
+tag method
|
||
|
||
p
|
||
| Calculates the lowest common ancestor matrix for a given #[code Doc].
|
||
| Returns LCA matrix containing the integer index of the ancestor, or
|
||
| #[code -1] if no common ancestor is found, e.g. if span excludes a
|
||
| necessary ancestor.
|
||
|
||
+aside-code("Example").
|
||
doc = nlp(u"This is a test")
|
||
matrix = doc.get_lca_matrix()
|
||
# array([[0, 1, 1, 1], [1, 1, 1, 1], [1, 1, 2, 3], [1, 1, 3, 3]], dtype=int32)
|
||
|
||
+table(["Name", "Type", "Description"])
|
||
+row("foot")
|
||
+cell returns
|
||
+cell #[code.u-break numpy.ndarray[ndim=2, dtype='int32']]
|
||
+cell The lowest common ancestor matrix of the #[code Doc].
|
||
|
||
+h(2, "to_array") Doc.to_array
|
||
+tag method
|
||
|
||
p
|
||
| Export given token attributes to a numpy #[code ndarray].
|
||
| If #[code attr_ids] is a sequence of #[code M] attributes,
|
||
| the output array will be of shape #[code (N, M)], where #[code N]
|
||
| is the length of the #[code Doc] (in tokens). If #[code attr_ids] is
|
||
| a single attribute, the output shape will be #[code (N,)]. You can
|
||
| specify attributes by integer ID (e.g. #[code spacy.attrs.LEMMA])
|
||
| or string name (e.g. 'LEMMA' or 'lemma'). The values will be 64-bit
|
||
| integers.
|
||
|
||
+aside-code("Example").
|
||
from spacy.attrs import LOWER, POS, ENT_TYPE, IS_ALPHA
|
||
doc = nlp(text)
|
||
# All strings mapped to integers, for easy export to numpy
|
||
np_array = doc.to_array([LOWER, POS, ENT_TYPE, IS_ALPHA])
|
||
np_array = doc.to_array("POS")
|
||
|
||
+table(["Name", "Type", "Description"])
|
||
+row
|
||
+cell #[code attr_ids]
|
||
+cell list or int or string
|
||
+cell
|
||
| A list of attributes (int IDs or string names) or
|
||
| a single attribute (int ID or string name)
|
||
|
||
+row("foot")
|
||
+cell returns
|
||
+cell
|
||
| #[code.u-break numpy.ndarray[ndim=2, dtype='uint64']] or
|
||
| #[code.u-break numpy.ndarray[ndim=1, dtype='uint64']] or
|
||
+cell
|
||
| The exported attributes as a 2D numpy array, with one row per
|
||
| token and one column per attribute (when #[code attr_ids] is a
|
||
| list), or as a 1D numpy array, with one item per attribute (when
|
||
| #[code attr_ids] is a single value).
|
||
|
||
+h(2, "from_array") Doc.from_array
|
||
+tag method
|
||
|
||
p
|
||
| Load attributes from a numpy array. Write to a #[code Doc] object, from
|
||
| an #[code (M, N)] array of attributes.
|
||
|
||
+aside-code("Example").
|
||
from spacy.attrs import LOWER, POS, ENT_TYPE, IS_ALPHA
|
||
from spacy.tokens import Doc
|
||
doc = nlp("Hello world!")
|
||
np_array = doc.to_array([LOWER, POS, ENT_TYPE, IS_ALPHA])
|
||
doc2 = Doc(doc.vocab, words=[t.text for t in doc])
|
||
doc2.from_array([LOWER, POS, ENT_TYPE, IS_ALPHA], np_array)
|
||
assert doc[0].pos_ == doc2[0].pos_
|
||
|
||
+table(["Name", "Type", "Description"])
|
||
+row
|
||
+cell #[code attrs]
|
||
+cell ints
|
||
+cell A list of attribute ID ints.
|
||
|
||
+row
|
||
+cell #[code array]
|
||
+cell #[code.u-break numpy.ndarray[ndim=2, dtype='int32']]
|
||
+cell The attribute values to load.
|
||
|
||
+row("foot")
|
||
+cell returns
|
||
+cell #[code Doc]
|
||
+cell Itself.
|
||
|
||
+h(2, "to_disk") Doc.to_disk
|
||
+tag method
|
||
+tag-new(2)
|
||
|
||
p Save the current state to a directory.
|
||
|
||
+aside-code("Example").
|
||
doc.to_disk('/path/to/doc')
|
||
|
||
+table(["Name", "Type", "Description"])
|
||
+row
|
||
+cell #[code path]
|
||
+cell unicode or #[code Path]
|
||
+cell
|
||
| A path to a directory, which will be created if it doesn't exist.
|
||
| Paths may be either strings or #[code Path]-like objects.
|
||
|
||
+h(2, "from_disk") Doc.from_disk
|
||
+tag method
|
||
+tag-new(2)
|
||
|
||
p Loads state from a directory. Modifies the object in place and returns it.
|
||
|
||
+aside-code("Example").
|
||
from spacy.tokens import Doc
|
||
from spacy.vocab import Vocab
|
||
doc = Doc(Vocab()).from_disk('/path/to/doc')
|
||
|
||
+table(["Name", "Type", "Description"])
|
||
+row
|
||
+cell #[code path]
|
||
+cell unicode or #[code Path]
|
||
+cell
|
||
| A path to a directory. Paths may be either strings or
|
||
| #[code Path]-like objects.
|
||
|
||
+row("foot")
|
||
+cell returns
|
||
+cell #[code Doc]
|
||
+cell The modified #[code Doc] object.
|
||
|
||
+h(2, "to_bytes") Doc.to_bytes
|
||
+tag method
|
||
|
||
p Serialize, i.e. export the document contents to a binary string.
|
||
|
||
+aside-code("Example").
|
||
doc = nlp(u'Give it back! He pleaded.')
|
||
doc_bytes = doc.to_bytes()
|
||
|
||
+table(["Name", "Type", "Description"])
|
||
+row("foot")
|
||
+cell returns
|
||
+cell bytes
|
||
+cell
|
||
| A losslessly serialized copy of the #[code Doc], including all
|
||
| annotations.
|
||
|
||
+h(2, "from_bytes") Doc.from_bytes
|
||
+tag method
|
||
|
||
p Deserialize, i.e. import the document contents from a binary string.
|
||
|
||
+aside-code("Example").
|
||
from spacy.tokens import Doc
|
||
text = u'Give it back! He pleaded.'
|
||
doc = nlp(text)
|
||
bytes = doc.to_bytes()
|
||
doc2 = Doc(doc.vocab).from_bytes(bytes)
|
||
assert doc.text == doc2.text
|
||
|
||
+table(["Name", "Type", "Description"])
|
||
+row
|
||
+cell #[code data]
|
||
+cell bytes
|
||
+cell The string to load from.
|
||
|
||
+row("foot")
|
||
+cell returns
|
||
+cell #[code Doc]
|
||
+cell The #[code Doc] object.
|
||
|
||
+h(2, "merge") Doc.merge
|
||
+tag method
|
||
|
||
p
|
||
| Retokenize the document, such that the span at
|
||
| #[code doc.text[start_idx : end_idx]] is merged into a single token. If
|
||
| #[code start_idx] and #[code end_idx] do not mark start and end token
|
||
| boundaries, the document remains unchanged.
|
||
|
||
+aside-code("Example").
|
||
doc = nlp(u'Los Angeles start.')
|
||
doc.merge(0, len('Los Angeles'), 'NNP', 'Los Angeles', 'GPE')
|
||
assert [t.text for t in doc] == [u'Los Angeles', u'start', u'.']
|
||
|
||
+table(["Name", "Type", "Description"])
|
||
+row
|
||
+cell #[code start_idx]
|
||
+cell int
|
||
+cell The character index of the start of the slice to merge.
|
||
|
||
+row
|
||
+cell #[code end_idx]
|
||
+cell int
|
||
+cell The character index after the end of the slice to merge.
|
||
|
||
+row
|
||
+cell #[code **attributes]
|
||
+cell -
|
||
+cell
|
||
| Attributes to assign to the merged token. By default,
|
||
| attributes are inherited from the syntactic root token of
|
||
| the span.
|
||
|
||
+row("foot")
|
||
+cell returns
|
||
+cell #[code Token]
|
||
+cell
|
||
| The newly merged token, or #[code None] if the start and end
|
||
| indices did not fall at token boundaries
|
||
|
||
+h(2, "print_tree") Doc.print_tree
|
||
+tag method
|
||
+tag-model("parse")
|
||
|
||
p
|
||
| Returns the parse trees in JSON (dict) format. Especially useful for
|
||
| web applications.
|
||
|
||
+aside-code("Example").
|
||
doc = nlp(u'Alice ate the pizza.')
|
||
trees = doc.print_tree()
|
||
# {'modifiers': [
|
||
# {'modifiers': [], 'NE': 'PERSON', 'word': 'Alice', 'arc': 'nsubj', 'POS_coarse': 'PROPN', 'POS_fine': 'NNP', 'lemma': 'Alice'},
|
||
# {'modifiers': [{'modifiers': [], 'NE': '', 'word': 'the', 'arc': 'det', 'POS_coarse': 'DET', 'POS_fine': 'DT', 'lemma': 'the'}], 'NE': '', 'word': 'pizza', 'arc': 'dobj', 'POS_coarse': 'NOUN', 'POS_fine': 'NN', 'lemma': 'pizza'},
|
||
# {'modifiers': [], 'NE': '', 'word': '.', 'arc': 'punct', 'POS_coarse': 'PUNCT', 'POS_fine': '.', 'lemma': '.'}
|
||
# ], 'NE': '', 'word': 'ate', 'arc': 'ROOT', 'POS_coarse': 'VERB', 'POS_fine': 'VBD', 'lemma': 'eat'}
|
||
|
||
+table(["Name", "Type", "Description"])
|
||
+row
|
||
+cell #[code light]
|
||
+cell bool
|
||
+cell Don't include lemmas or entities.
|
||
|
||
+row
|
||
+cell #[code flat]
|
||
+cell bool
|
||
+cell Don't include arcs or modifiers.
|
||
|
||
+row("foot")
|
||
+cell returns
|
||
+cell dict
|
||
+cell Parse tree as dict.
|
||
|
||
+h(2, "ents") Doc.ents
|
||
+tag property
|
||
+tag-model("NER")
|
||
|
||
p
|
||
| Iterate over the entities in the document. Yields named-entity
|
||
| #[code Span] objects, if the entity recognizer has been applied to the
|
||
| document.
|
||
|
||
+aside-code("Example").
|
||
doc = nlp(u'Mr. Best flew to New York on Saturday morning.')
|
||
ents = list(doc.ents)
|
||
assert ents[0].label == 346
|
||
assert ents[0].label_ == 'PERSON'
|
||
assert ents[0].text == 'Mr. Best'
|
||
|
||
+table(["Name", "Type", "Description"])
|
||
+row("foot")
|
||
+cell yields
|
||
+cell #[code Span]
|
||
+cell Entities in the document.
|
||
|
||
+h(2, "noun_chunks") Doc.noun_chunks
|
||
+tag property
|
||
+tag-model("parse")
|
||
|
||
p
|
||
| Iterate over the base noun phrases in the document. Yields base
|
||
| noun-phrase #[code Span] objects, if the document has been syntactically
|
||
| parsed. A base noun phrase, or "NP chunk", is a noun phrase that does not
|
||
| permit other NPs to be nested within it – so no NP-level coordination, no
|
||
| prepositional phrases, and no relative clauses.
|
||
|
||
+aside-code("Example").
|
||
doc = nlp(u'A phrase with another phrase occurs.')
|
||
chunks = list(doc.noun_chunks)
|
||
assert chunks[0].text == "A phrase"
|
||
assert chunks[1].text == "another phrase"
|
||
|
||
+table(["Name", "Type", "Description"])
|
||
+row("foot")
|
||
+cell yields
|
||
+cell #[code Span]
|
||
+cell Noun chunks in the document.
|
||
|
||
+h(2, "sents") Doc.sents
|
||
+tag property
|
||
+tag-model("parse")
|
||
|
||
p
|
||
| Iterate over the sentences in the document. Sentence spans have no label.
|
||
| To improve accuracy on informal texts, spaCy calculates sentence boundaries
|
||
| from the syntactic dependency parse. If the parser is disabled,
|
||
| the #[code sents] iterator will be unavailable.
|
||
|
||
+aside-code("Example").
|
||
doc = nlp(u"This is a sentence. Here's another...")
|
||
sents = list(doc.sents)
|
||
assert len(sents) == 2
|
||
assert [s.root.text for s in sents] == ["is", "'s"]
|
||
|
||
+table(["Name", "Type", "Description"])
|
||
+row("foot")
|
||
+cell yields
|
||
+cell #[code Span]
|
||
+cell Sentences in the document.
|
||
|
||
+h(2, "has_vector") Doc.has_vector
|
||
+tag property
|
||
+tag-model("vectors")
|
||
|
||
p
|
||
| A boolean value indicating whether a word vector is associated with the
|
||
| object.
|
||
|
||
+aside-code("Example").
|
||
doc = nlp(u'I like apples')
|
||
assert doc.has_vector
|
||
|
||
+table(["Name", "Type", "Description"])
|
||
+row("foot")
|
||
+cell returns
|
||
+cell bool
|
||
+cell Whether the document has a vector data attached.
|
||
|
||
+h(2, "vector") Doc.vector
|
||
+tag property
|
||
+tag-model("vectors")
|
||
|
||
p
|
||
| A real-valued meaning representation. Defaults to an average of the
|
||
| token vectors.
|
||
|
||
+aside-code("Example").
|
||
doc = nlp(u'I like apples')
|
||
assert doc.vector.dtype == 'float32'
|
||
assert doc.vector.shape == (300,)
|
||
|
||
+table(["Name", "Type", "Description"])
|
||
+row("foot")
|
||
+cell returns
|
||
+cell #[code.u-break numpy.ndarray[ndim=1, dtype='float32']]
|
||
+cell A 1D numpy array representing the document's semantics.
|
||
|
||
+h(2, "vector_norm") Doc.vector_norm
|
||
+tag property
|
||
+tag-model("vectors")
|
||
|
||
p
|
||
| The L2 norm of the document's vector representation.
|
||
|
||
+aside-code("Example").
|
||
doc1 = nlp(u'I like apples')
|
||
doc2 = nlp(u'I like oranges')
|
||
doc1.vector_norm # 4.54232424414368
|
||
doc2.vector_norm # 3.304373298575751
|
||
assert doc1.vector_norm != doc2.vector_norm
|
||
|
||
+table(["Name", "Type", "Description"])
|
||
+row("foot")
|
||
+cell returns
|
||
+cell float
|
||
+cell The L2 norm of the vector representation.
|
||
|
||
+h(2, "attributes") Attributes
|
||
|
||
+table(["Name", "Type", "Description"])
|
||
+row
|
||
+cell #[code text]
|
||
+cell unicode
|
||
+cell A unicode representation of the document text.
|
||
|
||
+row
|
||
+cell #[code text_with_ws]
|
||
+cell unicode
|
||
+cell
|
||
| An alias of #[code Doc.text], provided for duck-type compatibility
|
||
| with #[code Span] and #[code Token].
|
||
|
||
+row
|
||
+cell #[code mem]
|
||
+cell #[code Pool]
|
||
+cell The document's local memory heap, for all C data it owns.
|
||
|
||
+row
|
||
+cell #[code vocab]
|
||
+cell #[code Vocab]
|
||
+cell The store of lexical types.
|
||
|
||
+row
|
||
+cell #[code tensor] #[+tag-new(2)]
|
||
+cell object
|
||
+cell Container for dense vector representations.
|
||
|
||
+row
|
||
+cell #[code cats] #[+tag-new(2)]
|
||
+cell dictionary
|
||
+cell
|
||
| Maps either a label to a score for categories applied to whole
|
||
| document, or #[code (start_char, end_char, label)] to score for
|
||
| categories applied to spans. #[code start_char] and #[code end_char]
|
||
| should be character offsets, label can be either a string or an
|
||
| integer ID, and score should be a float.
|
||
|
||
+row
|
||
+cell #[code user_data]
|
||
+cell -
|
||
+cell A generic storage area, for user custom data.
|
||
|
||
+row
|
||
+cell #[code is_tagged]
|
||
+cell bool
|
||
+cell
|
||
| A flag indicating that the document has been part-of-speech
|
||
| tagged.
|
||
|
||
+row
|
||
+cell #[code is_parsed]
|
||
+cell bool
|
||
+cell A flag indicating that the document has been syntactically parsed.
|
||
|
||
+row
|
||
+cell #[code is_sentenced]
|
||
+cell bool
|
||
+cell
|
||
| A flag indicating that sentence boundaries have been applied to
|
||
| the document.
|
||
|
||
+row
|
||
+cell #[code sentiment]
|
||
+cell float
|
||
+cell The document's positivity/negativity score, if available.
|
||
|
||
+row
|
||
+cell #[code user_hooks]
|
||
+cell dict
|
||
+cell
|
||
| A dictionary that allows customisation of the #[code Doc]'s
|
||
| properties.
|
||
|
||
+row
|
||
+cell #[code user_token_hooks]
|
||
+cell dict
|
||
+cell
|
||
| A dictionary that allows customisation of properties of
|
||
| #[code Token] children.
|
||
|
||
+row
|
||
+cell #[code user_span_hooks]
|
||
+cell dict
|
||
+cell
|
||
| A dictionary that allows customisation of properties of
|
||
| #[code Span] children.
|
||
|
||
+row
|
||
+cell #[code _]
|
||
+cell #[code Underscore]
|
||
+cell
|
||
| User space for adding custom
|
||
| #[+a("/usage/processing-pipelines#custom-components-attributes") attribute extensions].
|