mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-10-31 16:07:41 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			127 lines
		
	
	
		
			4.0 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			127 lines
		
	
	
		
			4.0 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| # coding: utf-8
 | |
| from __future__ import unicode_literals
 | |
| 
 | |
| from ...tokenizer import Tokenizer
 | |
| from ..util import get_doc, add_vecs_to_vocab
 | |
| 
 | |
| import pytest
 | |
| 
 | |
| 
 | |
| @pytest.fixture
 | |
| def vectors():
 | |
|     return [("apple", [0.0, 1.0, 2.0]), ("orange", [3.0, -2.0, 4.0])]
 | |
| 
 | |
| 
 | |
| @pytest.fixture()
 | |
| def vocab(en_vocab, vectors):
 | |
|     return add_vecs_to_vocab(en_vocab, vectors)
 | |
| 
 | |
| 
 | |
| @pytest.fixture()
 | |
| def tokenizer_v(vocab):
 | |
|     return Tokenizer(vocab, {}, None, None, None)
 | |
| 
 | |
| 
 | |
| @pytest.mark.parametrize('text', ["apple and orange"])
 | |
| def test_vectors_token_vector(tokenizer_v, vectors, text):
 | |
|     doc = tokenizer_v(text)
 | |
|     assert vectors[0] == (doc[0].text, list(doc[0].vector))
 | |
|     assert vectors[1] == (doc[2].text, list(doc[2].vector))
 | |
| 
 | |
| 
 | |
| @pytest.mark.parametrize('text', ["apple", "orange"])
 | |
| def test_vectors_lexeme_vector(vocab, text):
 | |
|     lex = vocab[text]
 | |
|     assert list(lex.vector)
 | |
|     assert lex.vector_norm
 | |
| 
 | |
| 
 | |
| @pytest.mark.parametrize('text', [["apple", "and", "orange"]])
 | |
| def test_vectors_doc_vector(vocab, text):
 | |
|     doc = get_doc(vocab, text)
 | |
|     assert list(doc.vector)
 | |
|     assert doc.vector_norm
 | |
| 
 | |
| 
 | |
| @pytest.mark.parametrize('text', [["apple", "and", "orange"]])
 | |
| def test_vectors_span_vector(vocab, text):
 | |
|     span = get_doc(vocab, text)[0:2]
 | |
|     assert list(span.vector)
 | |
|     assert span.vector_norm
 | |
| 
 | |
| 
 | |
| @pytest.mark.parametrize('text', ["apple orange"])
 | |
| def test_vectors_token_token_similarity(tokenizer_v, text):
 | |
|     doc = tokenizer_v(text)
 | |
|     assert doc[0].similarity(doc[1]) == doc[1].similarity(doc[0])
 | |
|     assert 0.0 < doc[0].similarity(doc[1]) < 1.0
 | |
| 
 | |
| 
 | |
| @pytest.mark.parametrize('text1,text2', [("apple", "orange")])
 | |
| def test_vectors_token_lexeme_similarity(tokenizer_v, vocab, text1, text2):
 | |
|     token = tokenizer_v(text1)
 | |
|     lex = vocab[text2]
 | |
|     assert token.similarity(lex) == lex.similarity(token)
 | |
|     assert 0.0 < token.similarity(lex) < 1.0
 | |
| 
 | |
| 
 | |
| @pytest.mark.parametrize('text', [["apple", "orange", "juice"]])
 | |
| def test_vectors_token_span_similarity(vocab, text):
 | |
|     doc = get_doc(vocab, text)
 | |
|     assert doc[0].similarity(doc[1:3]) == doc[1:3].similarity(doc[0])
 | |
|     assert 0.0 < doc[0].similarity(doc[1:3]) < 1.0
 | |
| 
 | |
| 
 | |
| @pytest.mark.parametrize('text', [["apple", "orange", "juice"]])
 | |
| def test_vectors_token_doc_similarity(vocab, text):
 | |
|     doc = get_doc(vocab, text)
 | |
|     assert doc[0].similarity(doc) == doc.similarity(doc[0])
 | |
|     assert 0.0 < doc[0].similarity(doc) < 1.0
 | |
| 
 | |
| 
 | |
| @pytest.mark.parametrize('text', [["apple", "orange", "juice"]])
 | |
| def test_vectors_lexeme_span_similarity(vocab, text):
 | |
|     doc = get_doc(vocab, text)
 | |
|     lex = vocab[text[0]]
 | |
|     assert lex.similarity(doc[1:3]) == doc[1:3].similarity(lex)
 | |
|     assert 0.0 < doc.similarity(doc[1:3]) < 1.0
 | |
| 
 | |
| 
 | |
| @pytest.mark.parametrize('text1,text2', [("apple", "orange")])
 | |
| def test_vectors_lexeme_lexeme_similarity(vocab, text1, text2):
 | |
|     lex1 = vocab[text1]
 | |
|     lex2 = vocab[text2]
 | |
|     assert lex1.similarity(lex2) == lex2.similarity(lex1)
 | |
|     assert 0.0 < lex1.similarity(lex2) < 1.0
 | |
| 
 | |
| 
 | |
| @pytest.mark.parametrize('text', [["apple", "orange", "juice"]])
 | |
| def test_vectors_lexeme_doc_similarity(vocab, text):
 | |
|     doc = get_doc(vocab, text)
 | |
|     lex = vocab[text[0]]
 | |
|     assert lex.similarity(doc) == doc.similarity(lex)
 | |
|     assert 0.0 < lex.similarity(doc) < 1.0
 | |
| 
 | |
| 
 | |
| @pytest.mark.parametrize('text', [["apple", "orange", "juice"]])
 | |
| def test_vectors_span_span_similarity(vocab, text):
 | |
|     doc = get_doc(vocab, text)
 | |
|     assert doc[0:2].similarity(doc[1:3]) == doc[1:3].similarity(doc[0:2])
 | |
|     assert 0.0 < doc[0:2].similarity(doc[1:3]) < 1.0
 | |
| 
 | |
| 
 | |
| @pytest.mark.parametrize('text', [["apple", "orange", "juice"]])
 | |
| def test_vectors_span_doc_similarity(vocab, text):
 | |
|     doc = get_doc(vocab, text)
 | |
|     assert doc[0:2].similarity(doc) == doc.similarity(doc[0:2])
 | |
|     assert 0.0 < doc[0:2].similarity(doc) < 1.0
 | |
| 
 | |
| 
 | |
| @pytest.mark.parametrize('text1,text2', [
 | |
|     (["apple", "and", "apple", "pie"], ["orange", "juice"])])
 | |
| def test_vectors_doc_doc_similarity(vocab, text1, text2):
 | |
|     doc1 = get_doc(vocab, text1)
 | |
|     doc2 = get_doc(vocab, text2)
 | |
|     assert doc1.similarity(doc2) == doc2.similarity(doc1)
 | |
|     assert 0.0 < doc1.similarity(doc2) < 1.0
 |