mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-14 19:46:26 +03:00
b4e457d9fe
* Add support for multiple code files to all relevant commands Prior to this, only the package command supported multiple code files. * Update docs * Add debug data test, plus generic fixtures One tricky thing here: it's tempting to create the config by creating a pipeline in code, but that requires declaring the custom components here. However the CliRunner appears to be run in the same process or otherwise have access to our registry, so it works even without any code arguments. So it's necessary to avoid declaring the components in the tests. * Add debug config test and restructure The code argument imports the provided file. If it adds item to the registry, that affects global state, which CliRunner doesn't isolate. Since there's no standard way to remove things from the registry, this instead uses subprocess.run to run commands. * Use a more generic, parametrized test * Add output arg for assemble and pretrain Assemble and pretrain require an output argument. This commit adds assemble testing, but not pretrain, as that requires an actual trainable component, which is not currently in the test config. * Add evaluate test and some cleanup * Mark tests as slow * Revert argument name change * Apply suggestions from code review Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com> * Format API CLI docs * isort * Fix imports in tests * isort * Undo changes to package CLI help * Fix python executable and lang code in test * Fix executable in another test --------- Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com> Co-authored-by: Raphael Mitsch <r.mitsch@outlook.com>
114 lines
4.5 KiB
Python
114 lines
4.5 KiB
Python
from pathlib import Path
|
|
from typing import Any, Dict, List, Optional, Union
|
|
|
|
import typer
|
|
from thinc.api import Config
|
|
from thinc.config import VARIABLE_RE
|
|
from wasabi import msg, table
|
|
|
|
from .. import util
|
|
from ..schemas import ConfigSchemaInit, ConfigSchemaTraining
|
|
from ..util import registry
|
|
from ._util import (
|
|
Arg,
|
|
Opt,
|
|
debug_cli,
|
|
import_code_paths,
|
|
parse_config_overrides,
|
|
show_validation_error,
|
|
)
|
|
|
|
|
|
@debug_cli.command(
|
|
"config",
|
|
context_settings={"allow_extra_args": True, "ignore_unknown_options": True},
|
|
)
|
|
def debug_config_cli(
|
|
# fmt: off
|
|
ctx: typer.Context, # This is only used to read additional arguments
|
|
config_path: Path = Arg(..., help="Path to config file", exists=True, allow_dash=True),
|
|
code_path: str = Opt("", "--code", "-c", help="Comma-separated paths to Python files with additional code (registered functions) to be imported"),
|
|
show_funcs: bool = Opt(False, "--show-functions", "-F", help="Show an overview of all registered functions used in the config and where they come from (modules, files etc.)"),
|
|
show_vars: bool = Opt(False, "--show-variables", "-V", help="Show an overview of all variables referenced in the config and their values. This will also reflect variables overwritten on the CLI.")
|
|
# fmt: on
|
|
):
|
|
"""Debug a config file and show validation errors. The command will
|
|
create all objects in the tree and validate them. Note that some config
|
|
validation errors are blocking and will prevent the rest of the config from
|
|
being resolved. This means that you may not see all validation errors at
|
|
once and some issues are only shown once previous errors have been fixed.
|
|
Similar as with the 'train' command, you can override settings from the config
|
|
as command line options. For instance, --training.batch_size 128 overrides
|
|
the value of "batch_size" in the block "[training]".
|
|
|
|
DOCS: https://spacy.io/api/cli#debug-config
|
|
"""
|
|
overrides = parse_config_overrides(ctx.args)
|
|
import_code_paths(code_path)
|
|
debug_config(
|
|
config_path, overrides=overrides, show_funcs=show_funcs, show_vars=show_vars
|
|
)
|
|
|
|
|
|
def debug_config(
|
|
config_path: Path,
|
|
*,
|
|
overrides: Dict[str, Any] = {},
|
|
show_funcs: bool = False,
|
|
show_vars: bool = False,
|
|
):
|
|
msg.divider("Config validation")
|
|
with show_validation_error(config_path):
|
|
config = util.load_config(config_path, overrides=overrides)
|
|
nlp = util.load_model_from_config(config)
|
|
config = nlp.config.interpolate()
|
|
msg.divider("Config validation for [initialize]")
|
|
with show_validation_error(config_path):
|
|
T = registry.resolve(config["initialize"], schema=ConfigSchemaInit)
|
|
msg.divider("Config validation for [training]")
|
|
with show_validation_error(config_path):
|
|
T = registry.resolve(config["training"], schema=ConfigSchemaTraining)
|
|
dot_names = [T["train_corpus"], T["dev_corpus"]]
|
|
util.resolve_dot_names(config, dot_names)
|
|
msg.good("Config is valid")
|
|
if show_vars:
|
|
variables = get_variables(config)
|
|
msg.divider(f"Variables ({len(variables)})")
|
|
head = ("Variable", "Value")
|
|
msg.table(variables, header=head, divider=True, widths=(41, 34), spacing=2)
|
|
if show_funcs:
|
|
funcs = get_registered_funcs(config)
|
|
msg.divider(f"Registered functions ({len(funcs)})")
|
|
for func in funcs:
|
|
func_data = {
|
|
"Registry": f"@{func['registry']}",
|
|
"Name": func["name"],
|
|
"Module": func["module"],
|
|
"File": f"{func['file']} (line {func['line_no']})",
|
|
}
|
|
msg.info(f"[{func['path']}]")
|
|
print(table(func_data).strip())
|
|
|
|
|
|
def get_registered_funcs(config: Config) -> List[Dict[str, Optional[Union[str, int]]]]:
|
|
result = []
|
|
for key, value in util.walk_dict(config):
|
|
if not key[-1].startswith("@"):
|
|
continue
|
|
# We have a reference to a registered function
|
|
reg_name = key[-1][1:]
|
|
registry = getattr(util.registry, reg_name)
|
|
path = ".".join(key[:-1])
|
|
info = registry.find(value)
|
|
result.append({"name": value, "registry": reg_name, "path": path, **info})
|
|
return result
|
|
|
|
|
|
def get_variables(config: Config) -> Dict[str, Any]:
|
|
result = {}
|
|
for variable in sorted(set(VARIABLE_RE.findall(config.to_str()))):
|
|
path = variable[2:-1].replace(":", ".")
|
|
value = util.dot_to_object(config, path)
|
|
result[variable] = repr(value)
|
|
return result
|