spaCy/spacy/syntax/parser.pyx
2016-09-26 18:09:33 +02:00

319 lines
11 KiB
Cython

# cython: infer_types=True
"""
MALT-style dependency parser
"""
from __future__ import unicode_literals
cimport cython
cimport cython.parallel
from cpython.ref cimport PyObject, Py_INCREF, Py_XDECREF
from cpython.exc cimport PyErr_CheckSignals
from libc.stdint cimport uint32_t, uint64_t
from libc.string cimport memset, memcpy
from libc.stdlib cimport malloc, calloc, free
import os.path
from os import path
import shutil
import json
import sys
from .nonproj import PseudoProjectivity
from cymem.cymem cimport Pool, Address
from murmurhash.mrmr cimport hash64
from thinc.typedefs cimport weight_t, class_t, feat_t, atom_t, hash_t
from thinc.linear.avgtron cimport AveragedPerceptron
from thinc.linalg cimport VecVec
from thinc.structs cimport SparseArrayC
from preshed.maps cimport MapStruct
from preshed.maps cimport map_get
from thinc.structs cimport FeatureC
from util import Config
from ..structs cimport TokenC
from ..tokens.doc cimport Doc
from ..strings cimport StringStore
from .transition_system import OracleError
from .transition_system cimport TransitionSystem, Transition
from ..gold cimport GoldParse
from . import _parse_features
from ._parse_features cimport CONTEXT_SIZE
from ._parse_features cimport fill_context
from .stateclass cimport StateClass
from ._state cimport StateC
DEBUG = False
def set_debug(val):
global DEBUG
DEBUG = val
def get_templates(name):
pf = _parse_features
if name == 'ner':
return pf.ner
elif name == 'debug':
return pf.unigrams
elif name.startswith('embed'):
return (pf.words, pf.tags, pf.labels)
else:
return (pf.unigrams + pf.s0_n0 + pf.s1_n0 + pf.s1_s0 + pf.s0_n1 + pf.n0_n1 + \
pf.tree_shape + pf.trigrams)
def ParserFactory(transition_system):
return lambda strings, dir_: Parser(strings, dir_, transition_system)
cdef class ParserModel(AveragedPerceptron):
cdef void set_featuresC(self, ExampleC* eg, const StateC* state) nogil:
fill_context(eg.atoms, state)
eg.nr_feat = self.extracter.set_features(eg.features, eg.atoms)
cdef class Parser:
@classmethod
def load(cls, path, Vocab vocab, moves_class):
if (path / 'config.json').exists():
with (path / 'config.json').open() as file_:
cfg = json.load(file_)
moves = moves_class(vocab.strings, cfg['labels'])
templates = get_templates(cfg['features'])
model = ParserModel(templates)
if (path / 'model').exists():
model.load(str(path / 'model'))
return cls(vocab, moves, model, **cfg)
@classmethod
def blank(cls, Vocab vocab, moves_class, **cfg):
moves = moves_class(vocab.strings, cfg.get('labels', {}))
templates = cfg.get('features', tuple())
model = ParserModel(templates)
return cls(vocab, moves, model, **cfg)
def __init__(self, Vocab vocab, transition_system, ParserModel model, **cfg):
self.moves = transition_system
self.model = model
self.cfg = cfg
def __reduce__(self):
return (Parser, (self.vocab, self.moves, self.model), None, None)
def __call__(self, Doc tokens):
cdef int nr_class = self.moves.n_moves
cdef int nr_feat = self.model.nr_feat
with nogil:
self.parseC(tokens.c, tokens.length, nr_feat, nr_class)
# Check for KeyboardInterrupt etc. Untested
PyErr_CheckSignals()
self.moves.finalize_doc(tokens)
def pipe(self, stream, int batch_size=1000, int n_threads=2):
cdef Pool mem = Pool()
cdef TokenC** doc_ptr = <TokenC**>mem.alloc(batch_size, sizeof(TokenC*))
cdef int* lengths = <int*>mem.alloc(batch_size, sizeof(int))
cdef Doc doc
cdef int i
cdef int nr_class = self.moves.n_moves
cdef int nr_feat = self.model.nr_feat
cdef int status
queue = []
for doc in stream:
doc_ptr[len(queue)] = doc.c
lengths[len(queue)] = doc.length
queue.append(doc)
if len(queue) == batch_size:
with nogil:
for i in cython.parallel.prange(batch_size, num_threads=n_threads):
status = self.parseC(doc_ptr[i], lengths[i], nr_feat, nr_class)
if status != 0:
with gil:
sent_str = queue[i].text
raise ValueError("Error parsing doc: %s" % sent_str)
PyErr_CheckSignals()
for doc in queue:
self.moves.finalize_doc(doc)
yield doc
queue = []
batch_size = len(queue)
with nogil:
for i in cython.parallel.prange(batch_size, num_threads=n_threads):
status = self.parseC(doc_ptr[i], lengths[i], nr_feat, nr_class)
if status != 0:
with gil:
sent_str = queue[i].text
raise ValueError("Error parsing doc: %s" % sent_str)
PyErr_CheckSignals()
for doc in queue:
self.moves.finalize_doc(doc)
yield doc
cdef int parseC(self, TokenC* tokens, int length, int nr_feat, int nr_class) nogil:
cdef ExampleC eg
eg.nr_feat = nr_feat
eg.nr_atom = CONTEXT_SIZE
eg.nr_class = nr_class
eg.features = <FeatureC*>calloc(sizeof(FeatureC), nr_feat)
eg.atoms = <atom_t*>calloc(sizeof(atom_t), CONTEXT_SIZE)
eg.scores = <weight_t*>calloc(sizeof(weight_t), nr_class)
eg.is_valid = <int*>calloc(sizeof(int), nr_class)
state = new StateC(tokens, length)
self.moves.initialize_state(state)
cdef int i
while not state.is_final():
self.model.set_featuresC(&eg, state)
self.moves.set_valid(eg.is_valid, state)
self.model.set_scoresC(eg.scores, eg.features, eg.nr_feat)
guess = VecVec.arg_max_if_true(eg.scores, eg.is_valid, eg.nr_class)
action = self.moves.c[guess]
if not eg.is_valid[guess]:
return 1
action.do(state, action.label)
memset(eg.scores, 0, sizeof(eg.scores[0]) * eg.nr_class)
for i in range(eg.nr_class):
eg.is_valid[i] = 1
self.moves.finalize_state(state)
for i in range(length):
tokens[i] = state._sent[i]
del state
free(eg.features)
free(eg.atoms)
free(eg.scores)
free(eg.is_valid)
return 0
def train(self, Doc tokens, GoldParse gold):
self.moves.preprocess_gold(gold)
cdef StateClass stcls = StateClass.init(tokens.c, tokens.length)
self.moves.initialize_state(stcls.c)
cdef Pool mem = Pool()
cdef Example eg = Example(
nr_class=self.moves.n_moves,
nr_atom=CONTEXT_SIZE,
nr_feat=self.model.nr_feat)
cdef weight_t loss = 0
cdef Transition action
while not stcls.is_final():
self.model.set_featuresC(&eg.c, stcls.c)
self.moves.set_costs(eg.c.is_valid, eg.c.costs, stcls, gold)
self.model.set_scoresC(eg.c.scores, eg.c.features, eg.c.nr_feat)
self.model.updateC(&eg.c)
guess = VecVec.arg_max_if_true(eg.c.scores, eg.c.is_valid, eg.c.nr_class)
action = self.moves.c[eg.guess]
action.do(stcls.c, action.label)
loss += eg.costs[eg.guess]
eg.fill_scores(0, eg.nr_class)
eg.fill_costs(0, eg.nr_class)
eg.fill_is_valid(0, eg.nr_class)
return loss
def step_through(self, Doc doc):
return StepwiseState(self, doc)
def from_transition_sequence(self, Doc doc, sequence):
with self.step_through(doc) as stepwise:
for transition in sequence:
stepwise.transition(transition)
def add_label(self, label):
for action in self.moves.action_types:
self.moves.add_action(action, label)
cdef class StepwiseState:
cdef readonly StateClass stcls
cdef readonly Example eg
cdef readonly Doc doc
cdef readonly Parser parser
def __init__(self, Parser parser, Doc doc):
self.parser = parser
self.doc = doc
self.stcls = StateClass.init(doc.c, doc.length)
self.parser.moves.initialize_state(self.stcls.c)
self.eg = Example(
nr_class=self.parser.moves.n_moves,
nr_atom=CONTEXT_SIZE,
nr_feat=self.parser.model.nr_feat)
def __enter__(self):
return self
def __exit__(self, type, value, traceback):
self.finish()
@property
def is_final(self):
return self.stcls.is_final()
@property
def stack(self):
return self.stcls.stack
@property
def queue(self):
return self.stcls.queue
@property
def heads(self):
return [self.stcls.H(i) for i in range(self.stcls.c.length)]
@property
def deps(self):
return [self.doc.vocab.strings[self.stcls.c._sent[i].dep]
for i in range(self.stcls.c.length)]
def predict(self):
self.eg.reset()
self.parser.model.set_featuresC(&self.eg.c, self.stcls.c)
self.parser.moves.set_valid(self.eg.c.is_valid, self.stcls.c)
self.parser.model.set_scoresC(self.eg.c.scores,
self.eg.c.features, self.eg.c.nr_feat)
cdef Transition action = self.parser.moves.c[self.eg.guess]
return self.parser.moves.move_name(action.move, action.label)
def transition(self, action_name):
moves = {'S': 0, 'D': 1, 'L': 2, 'R': 3}
if action_name == '_':
action_name = self.predict()
action = self.parser.moves.lookup_transition(action_name)
elif action_name == 'L' or action_name == 'R':
self.predict()
move = moves[action_name]
clas = _arg_max_clas(self.eg.c.scores, move, self.parser.moves.c,
self.eg.c.nr_class)
action = self.parser.moves.c[clas]
else:
action = self.parser.moves.lookup_transition(action_name)
action.do(self.stcls.c, action.label)
def finish(self):
if self.stcls.is_final():
self.parser.moves.finalize_state(self.stcls.c)
self.doc.set_parse(self.stcls.c._sent)
self.parser.moves.finalize_doc(self.doc)
cdef int _arg_max_clas(const weight_t* scores, int move, const Transition* actions,
int nr_class) except -1:
cdef weight_t score = 0
cdef int mode = -1
cdef int i
for i in range(nr_class):
if actions[i].move == move and (mode == -1 or scores[i] >= score):
mode = i
score = scores[i]
return mode