mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-12 10:16:27 +03:00
723 lines
25 KiB
Cython
723 lines
25 KiB
Cython
# cython: infer_types=True
|
|
# cython: profile=True
|
|
# coding: utf8
|
|
from __future__ import unicode_literals
|
|
|
|
from thinc.api import chain, layerize, with_getitem
|
|
from thinc.neural import Model, Softmax
|
|
import numpy
|
|
cimport numpy as np
|
|
import cytoolz
|
|
import util
|
|
from collections import OrderedDict
|
|
import ujson
|
|
import msgpack
|
|
|
|
from thinc.api import add, layerize, chain, clone, concatenate, with_flatten
|
|
from thinc.neural import Model, Maxout, Softmax, Affine
|
|
from thinc.neural._classes.hash_embed import HashEmbed
|
|
from thinc.neural.util import to_categorical
|
|
|
|
from thinc.neural.pooling import Pooling, max_pool, mean_pool
|
|
from thinc.neural._classes.difference import Siamese, CauchySimilarity
|
|
|
|
from thinc.neural._classes.convolution import ExtractWindow
|
|
from thinc.neural._classes.resnet import Residual
|
|
from thinc.neural._classes.batchnorm import BatchNorm as BN
|
|
|
|
from .tokens.doc cimport Doc
|
|
from .syntax.parser cimport Parser as LinearParser
|
|
from .syntax.nn_parser cimport Parser as NeuralParser
|
|
from .syntax.parser import get_templates as get_feature_templates
|
|
from .syntax.beam_parser cimport BeamParser
|
|
from .syntax.ner cimport BiluoPushDown
|
|
from .syntax.arc_eager cimport ArcEager
|
|
from .tagger import Tagger
|
|
from .syntax.stateclass cimport StateClass
|
|
from .gold cimport GoldParse
|
|
from .morphology cimport Morphology
|
|
from .vocab cimport Vocab
|
|
from .syntax import nonproj
|
|
from .compat import json_dumps
|
|
|
|
from .attrs import ID, LOWER, PREFIX, SUFFIX, SHAPE, TAG, DEP, POS
|
|
from ._ml import rebatch, Tok2Vec, flatten, get_col, doc2feats
|
|
from ._ml import build_text_classifier, build_tagger_model
|
|
from .parts_of_speech import X
|
|
|
|
|
|
class SentenceSegmenter(object):
|
|
'''A simple spaCy hook, to allow custom sentence boundary detection logic
|
|
(that doesn't require the dependency parse).
|
|
|
|
To change the sentence boundary detection strategy, pass a generator
|
|
function `strategy` on initialization, or assign a new strategy to
|
|
the .strategy attribute.
|
|
|
|
Sentence detection strategies should be generators that take `Doc` objects
|
|
and yield `Span` objects for each sentence.
|
|
'''
|
|
name = 'sbd'
|
|
|
|
def __init__(self, vocab, strategy=None):
|
|
self.vocab = vocab
|
|
if strategy is None or strategy == 'on_punct':
|
|
strategy = self.split_on_punct
|
|
self.strategy = strategy
|
|
|
|
def __call__(self, doc):
|
|
doc.user_hooks['sents'] = self.strategy
|
|
|
|
@staticmethod
|
|
def split_on_punct(doc):
|
|
start = 0
|
|
seen_period = False
|
|
for i, word in enumerate(doc):
|
|
if seen_period and not word.is_punct:
|
|
yield doc[start : word.i]
|
|
start = word.i
|
|
seen_period = False
|
|
elif word.text in ['.', '!', '?']:
|
|
seen_period = True
|
|
if start < len(doc):
|
|
yield doc[start : len(doc)]
|
|
|
|
|
|
class BaseThincComponent(object):
|
|
name = None
|
|
|
|
@classmethod
|
|
def Model(cls, *shape, **kwargs):
|
|
raise NotImplementedError
|
|
|
|
def __init__(self, vocab, model=True, **cfg):
|
|
raise NotImplementedError
|
|
|
|
def __call__(self, doc):
|
|
scores = self.predict([doc])
|
|
self.set_annotations([doc], scores)
|
|
return doc
|
|
|
|
def pipe(self, stream, batch_size=128, n_threads=-1):
|
|
for docs in cytoolz.partition_all(batch_size, stream):
|
|
docs = list(docs)
|
|
scores = self.predict(docs)
|
|
self.set_annotations(docs, scores)
|
|
yield from docs
|
|
|
|
def predict(self, docs):
|
|
raise NotImplementedError
|
|
|
|
def set_annotations(self, docs, scores):
|
|
raise NotImplementedError
|
|
|
|
def update(self, docs_tensors, golds, state=None, drop=0., sgd=None, losses=None):
|
|
raise NotImplementedError
|
|
|
|
def get_loss(self, docs, golds, scores):
|
|
raise NotImplementedError
|
|
|
|
def begin_training(self, gold_tuples=tuple(), pipeline=None):
|
|
token_vector_width = pipeline[0].model.nO
|
|
if self.model is True:
|
|
self.model = self.Model(1, token_vector_width)
|
|
|
|
def use_params(self, params):
|
|
with self.model.use_params(params):
|
|
yield
|
|
|
|
def to_bytes(self, **exclude):
|
|
serialize = OrderedDict((
|
|
('model', lambda: self.model.to_bytes()),
|
|
('vocab', lambda: self.vocab.to_bytes())
|
|
))
|
|
return util.to_bytes(serialize, exclude)
|
|
|
|
def from_bytes(self, bytes_data, **exclude):
|
|
if self.model is True:
|
|
self.model = self.Model()
|
|
deserialize = OrderedDict((
|
|
('model', lambda b: self.model.from_bytes(b)),
|
|
('vocab', lambda b: self.vocab.from_bytes(b))
|
|
))
|
|
util.from_bytes(bytes_data, deserialize, exclude)
|
|
return self
|
|
|
|
def to_disk(self, path, **exclude):
|
|
serialize = OrderedDict((
|
|
('model', lambda p: p.open('wb').write(self.model.to_bytes())),
|
|
('vocab', lambda p: self.vocab.to_disk(p)),
|
|
('cfg', lambda p: p.open('w').write(json_dumps(self.cfg)))
|
|
))
|
|
util.to_disk(path, serialize, exclude)
|
|
|
|
def from_disk(self, path, **exclude):
|
|
if self.model is True:
|
|
self.model = self.Model()
|
|
deserialize = OrderedDict((
|
|
('model', lambda p: self.model.from_bytes(p.open('rb').read())),
|
|
('vocab', lambda p: self.vocab.from_disk(p)),
|
|
('cfg', lambda p: self.cfg.update(_load_cfg(p)))
|
|
))
|
|
util.from_disk(path, deserialize, exclude)
|
|
return self
|
|
|
|
|
|
def _load_cfg(path):
|
|
if path.exists():
|
|
return ujson.load(path.open())
|
|
else:
|
|
return {}
|
|
|
|
|
|
class TokenVectorEncoder(BaseThincComponent):
|
|
"""Assign position-sensitive vectors to tokens, using a CNN or RNN."""
|
|
name = 'tensorizer'
|
|
|
|
@classmethod
|
|
def Model(cls, width=128, embed_size=4000, **cfg):
|
|
"""Create a new statistical model for the class.
|
|
|
|
width (int): Output size of the model.
|
|
embed_size (int): Number of vectors in the embedding table.
|
|
**cfg: Config parameters.
|
|
RETURNS (Model): A `thinc.neural.Model` or similar instance.
|
|
"""
|
|
width = util.env_opt('token_vector_width', width)
|
|
embed_size = util.env_opt('embed_size', embed_size)
|
|
return Tok2Vec(width, embed_size, preprocess=None)
|
|
|
|
def __init__(self, vocab, model=True, **cfg):
|
|
"""Construct a new statistical model. Weights are not allocated on
|
|
initialisation.
|
|
|
|
vocab (Vocab): A `Vocab` instance. The model must share the same `Vocab`
|
|
instance with the `Doc` objects it will process.
|
|
model (Model): A `Model` instance or `True` allocate one later.
|
|
**cfg: Config parameters.
|
|
|
|
EXAMPLE:
|
|
>>> from spacy.pipeline import TokenVectorEncoder
|
|
>>> tok2vec = TokenVectorEncoder(nlp.vocab)
|
|
>>> tok2vec.model = tok2vec.Model(128, 5000)
|
|
"""
|
|
self.vocab = vocab
|
|
self.doc2feats = doc2feats()
|
|
self.model = model
|
|
self.cfg = dict(cfg)
|
|
|
|
def __call__(self, doc):
|
|
"""Add context-sensitive vectors to a `Doc`, e.g. from a CNN or LSTM
|
|
model. Vectors are set to the `Doc.tensor` attribute.
|
|
|
|
docs (Doc or iterable): One or more documents to add vectors to.
|
|
RETURNS (dict or None): Intermediate computations.
|
|
"""
|
|
tokvecses = self.predict([doc])
|
|
self.set_annotations([doc], tokvecses)
|
|
return doc
|
|
|
|
def pipe(self, stream, batch_size=128, n_threads=-1):
|
|
"""Process `Doc` objects as a stream.
|
|
|
|
stream (iterator): A sequence of `Doc` objects to process.
|
|
batch_size (int): Number of `Doc` objects to group.
|
|
n_threads (int): Number of threads.
|
|
YIELDS (iterator): A sequence of `Doc` objects, in order of input.
|
|
"""
|
|
for docs in cytoolz.partition_all(batch_size, stream):
|
|
docs = list(docs)
|
|
tokvecses = self.predict(docs)
|
|
self.set_annotations(docs, tokvecses)
|
|
yield from docs
|
|
|
|
def predict(self, docs):
|
|
"""Return a single tensor for a batch of documents.
|
|
|
|
docs (iterable): A sequence of `Doc` objects.
|
|
RETURNS (object): Vector representations for each token in the documents.
|
|
"""
|
|
feats = self.doc2feats(docs)
|
|
tokvecs = self.model(feats)
|
|
return tokvecs
|
|
|
|
def set_annotations(self, docs, tokvecses):
|
|
"""Set the tensor attribute for a batch of documents.
|
|
|
|
docs (iterable): A sequence of `Doc` objects.
|
|
tokvecs (object): Vector representation for each token in the documents.
|
|
"""
|
|
for doc, tokvecs in zip(docs, tokvecses):
|
|
assert tokvecs.shape[0] == len(doc)
|
|
doc.tensor = tokvecs
|
|
|
|
def update(self, docs, golds, state=None, drop=0., sgd=None, losses=None):
|
|
"""Update the model.
|
|
|
|
docs (iterable): A batch of `Doc` objects.
|
|
golds (iterable): A batch of `GoldParse` objects.
|
|
drop (float): The droput rate.
|
|
sgd (callable): An optimizer.
|
|
RETURNS (dict): Results from the update.
|
|
"""
|
|
if isinstance(docs, Doc):
|
|
docs = [docs]
|
|
feats = self.doc2feats(docs)
|
|
tokvecs, bp_tokvecs = self.model.begin_update(feats, drop=drop)
|
|
return tokvecs, bp_tokvecs
|
|
|
|
def get_loss(self, docs, golds, scores):
|
|
# TODO: implement
|
|
raise NotImplementedError
|
|
|
|
def begin_training(self, gold_tuples=tuple(), pipeline=None):
|
|
"""Allocate models, pre-process training data and acquire a trainer and
|
|
optimizer.
|
|
|
|
gold_tuples (iterable): Gold-standard training data.
|
|
pipeline (list): The pipeline the model is part of.
|
|
"""
|
|
self.doc2feats = doc2feats()
|
|
if self.model is True:
|
|
self.model = self.Model()
|
|
|
|
|
|
class NeuralTagger(BaseThincComponent):
|
|
name = 'tagger'
|
|
def __init__(self, vocab, model=True, **cfg):
|
|
self.vocab = vocab
|
|
self.model = model
|
|
self.cfg = dict(cfg)
|
|
|
|
def __call__(self, doc):
|
|
tags = self.predict(([doc], [doc.tensor]))
|
|
self.set_annotations([doc], tags)
|
|
return doc
|
|
|
|
def pipe(self, stream, batch_size=128, n_threads=-1):
|
|
for docs in cytoolz.partition_all(batch_size, stream):
|
|
docs = list(docs)
|
|
tokvecs = [d.tensor for d in docs]
|
|
tag_ids = self.predict((docs, tokvecs))
|
|
self.set_annotations(docs, tag_ids)
|
|
yield from docs
|
|
|
|
def predict(self, docs_tokvecs):
|
|
scores = self.model(docs_tokvecs)
|
|
scores = self.model.ops.flatten(scores)
|
|
guesses = scores.argmax(axis=1)
|
|
if not isinstance(guesses, numpy.ndarray):
|
|
guesses = guesses.get()
|
|
tokvecs = docs_tokvecs[1]
|
|
guesses = self.model.ops.unflatten(guesses,
|
|
[tv.shape[0] for tv in tokvecs])
|
|
return guesses
|
|
|
|
def set_annotations(self, docs, batch_tag_ids):
|
|
if isinstance(docs, Doc):
|
|
docs = [docs]
|
|
cdef Doc doc
|
|
cdef int idx = 0
|
|
cdef Vocab vocab = self.vocab
|
|
for i, doc in enumerate(docs):
|
|
doc_tag_ids = batch_tag_ids[i]
|
|
if hasattr(doc_tag_ids, 'get'):
|
|
doc_tag_ids = doc_tag_ids.get()
|
|
for j, tag_id in enumerate(doc_tag_ids):
|
|
# Don't clobber preset POS tags
|
|
if doc.c[j].tag == 0 and doc.c[j].pos == 0:
|
|
vocab.morphology.assign_tag_id(&doc.c[j], tag_id)
|
|
idx += 1
|
|
doc.is_tagged = True
|
|
|
|
def update(self, docs_tokvecs, golds, drop=0., sgd=None, losses=None):
|
|
if losses is not None and self.name not in losses:
|
|
losses[self.name] = 0.
|
|
docs, tokvecs = docs_tokvecs
|
|
|
|
if self.model.nI is None:
|
|
self.model.nI = tokvecs[0].shape[1]
|
|
tag_scores, bp_tag_scores = self.model.begin_update(docs_tokvecs, drop=drop)
|
|
loss, d_tag_scores = self.get_loss(docs, golds, tag_scores)
|
|
|
|
d_tokvecs = bp_tag_scores(d_tag_scores, sgd=sgd)
|
|
if losses is not None:
|
|
losses[self.name] += loss
|
|
return d_tokvecs
|
|
|
|
def get_loss(self, docs, golds, scores):
|
|
scores = self.model.ops.flatten(scores)
|
|
tag_index = {tag: i for i, tag in enumerate(self.vocab.morphology.tag_names)}
|
|
|
|
cdef int idx = 0
|
|
correct = numpy.zeros((scores.shape[0],), dtype='i')
|
|
guesses = scores.argmax(axis=1)
|
|
for gold in golds:
|
|
for tag in gold.tags:
|
|
if tag is None:
|
|
correct[idx] = guesses[idx]
|
|
else:
|
|
correct[idx] = tag_index[tag]
|
|
idx += 1
|
|
correct = self.model.ops.xp.array(correct, dtype='i')
|
|
d_scores = scores - to_categorical(correct, nb_classes=scores.shape[1])
|
|
d_scores /= d_scores.shape[0]
|
|
loss = (d_scores**2).sum()
|
|
d_scores = self.model.ops.unflatten(d_scores, [len(d) for d in docs])
|
|
return float(loss), d_scores
|
|
|
|
def begin_training(self, gold_tuples=tuple(), pipeline=None):
|
|
orig_tag_map = dict(self.vocab.morphology.tag_map)
|
|
new_tag_map = {}
|
|
for raw_text, annots_brackets in gold_tuples:
|
|
for annots, brackets in annots_brackets:
|
|
ids, words, tags, heads, deps, ents = annots
|
|
for tag in tags:
|
|
if tag in orig_tag_map:
|
|
new_tag_map[tag] = orig_tag_map[tag]
|
|
else:
|
|
new_tag_map[tag] = {POS: X}
|
|
if 'SP' not in new_tag_map:
|
|
new_tag_map['SP'] = orig_tag_map.get('SP', {POS: X})
|
|
cdef Vocab vocab = self.vocab
|
|
if new_tag_map:
|
|
vocab.morphology = Morphology(vocab.strings, new_tag_map,
|
|
vocab.morphology.lemmatizer,
|
|
exc=vocab.morphology.exc)
|
|
token_vector_width = pipeline[0].model.nO
|
|
if self.model is True:
|
|
self.model = self.Model(self.vocab.morphology.n_tags, token_vector_width)
|
|
|
|
@classmethod
|
|
def Model(cls, n_tags, token_vector_width):
|
|
return build_tagger_model(n_tags, token_vector_width)
|
|
|
|
def use_params(self, params):
|
|
with self.model.use_params(params):
|
|
yield
|
|
|
|
def to_bytes(self, **exclude):
|
|
serialize = OrderedDict((
|
|
('model', lambda: self.model.to_bytes()),
|
|
('vocab', lambda: self.vocab.to_bytes()),
|
|
('tag_map', lambda: msgpack.dumps(self.vocab.morphology.tag_map,
|
|
use_bin_type=True,
|
|
encoding='utf8'))
|
|
))
|
|
return util.to_bytes(serialize, exclude)
|
|
|
|
def from_bytes(self, bytes_data, **exclude):
|
|
def load_model(b):
|
|
if self.model is True:
|
|
token_vector_width = util.env_opt('token_vector_width', 128)
|
|
self.model = self.Model(self.vocab.morphology.n_tags, token_vector_width)
|
|
self.model.from_bytes(b)
|
|
|
|
def load_tag_map(b):
|
|
tag_map = msgpack.loads(b, encoding='utf8')
|
|
self.vocab.morphology = Morphology(
|
|
self.vocab.strings, tag_map=tag_map,
|
|
lemmatizer=self.vocab.morphology.lemmatizer,
|
|
exc=self.vocab.morphology.exc)
|
|
|
|
deserialize = OrderedDict((
|
|
('vocab', lambda b: self.vocab.from_bytes(b)),
|
|
('tag_map', load_tag_map),
|
|
('model', lambda b: load_model(b)),
|
|
))
|
|
util.from_bytes(bytes_data, deserialize, exclude)
|
|
return self
|
|
|
|
def to_disk(self, path, **exclude):
|
|
serialize = OrderedDict((
|
|
('vocab', lambda p: self.vocab.to_disk(p)),
|
|
('tag_map', lambda p: p.open('wb').write(msgpack.dumps(
|
|
self.vocab.morphology.tag_map,
|
|
use_bin_type=True,
|
|
encoding='utf8'))),
|
|
('model', lambda p: p.open('wb').write(self.model.to_bytes())),
|
|
('cfg', lambda p: p.open('w').write(json_dumps(self.cfg)))
|
|
))
|
|
util.to_disk(path, serialize, exclude)
|
|
|
|
def from_disk(self, path, **exclude):
|
|
def load_model(p):
|
|
if self.model is True:
|
|
token_vector_width = util.env_opt('token_vector_width', 128)
|
|
self.model = self.Model(self.vocab.morphology.n_tags, token_vector_width)
|
|
self.model.from_bytes(p.open('rb').read())
|
|
|
|
def load_tag_map(p):
|
|
with p.open('rb') as file_:
|
|
tag_map = msgpack.loads(file_.read(), encoding='utf8')
|
|
self.vocab.morphology = Morphology(
|
|
self.vocab.strings, tag_map=tag_map,
|
|
lemmatizer=self.vocab.morphology.lemmatizer,
|
|
exc=self.vocab.morphology.exc)
|
|
|
|
deserialize = OrderedDict((
|
|
('vocab', lambda p: self.vocab.from_disk(p)),
|
|
('tag_map', load_tag_map),
|
|
('model', load_model),
|
|
('cfg', lambda p: self.cfg.update(_load_cfg(p)))
|
|
))
|
|
util.from_disk(path, deserialize, exclude)
|
|
return self
|
|
|
|
|
|
class NeuralLabeller(NeuralTagger):
|
|
name = 'nn_labeller'
|
|
def __init__(self, vocab, model=True, **cfg):
|
|
self.vocab = vocab
|
|
self.model = model
|
|
self.cfg = dict(cfg)
|
|
|
|
@property
|
|
def labels(self):
|
|
return self.cfg.setdefault('labels', {})
|
|
|
|
@labels.setter
|
|
def labels(self, value):
|
|
self.cfg['labels'] = value
|
|
|
|
def set_annotations(self, docs, dep_ids):
|
|
pass
|
|
|
|
def begin_training(self, gold_tuples=tuple(), pipeline=None):
|
|
gold_tuples = nonproj.preprocess_training_data(gold_tuples)
|
|
for raw_text, annots_brackets in gold_tuples:
|
|
for annots, brackets in annots_brackets:
|
|
ids, words, tags, heads, deps, ents = annots
|
|
for dep in deps:
|
|
if dep not in self.labels:
|
|
self.labels[dep] = len(self.labels)
|
|
token_vector_width = pipeline[0].model.nO
|
|
if self.model is True:
|
|
self.model = self.Model(len(self.labels), token_vector_width)
|
|
|
|
@classmethod
|
|
def Model(cls, n_tags, token_vector_width):
|
|
return build_tagger_model(n_tags, token_vector_width)
|
|
|
|
def get_loss(self, docs, golds, scores):
|
|
scores = self.model.ops.flatten(scores)
|
|
cdef int idx = 0
|
|
correct = numpy.zeros((scores.shape[0],), dtype='i')
|
|
guesses = scores.argmax(axis=1)
|
|
for gold in golds:
|
|
for tag in gold.labels:
|
|
if tag is None or tag not in self.labels:
|
|
correct[idx] = guesses[idx]
|
|
else:
|
|
correct[idx] = self.labels[tag]
|
|
idx += 1
|
|
correct = self.model.ops.xp.array(correct, dtype='i')
|
|
d_scores = scores - to_categorical(correct, nb_classes=scores.shape[1])
|
|
d_scores /= d_scores.shape[0]
|
|
loss = (d_scores**2).sum()
|
|
d_scores = self.model.ops.unflatten(d_scores, [len(d) for d in docs])
|
|
return float(loss), d_scores
|
|
|
|
|
|
class SimilarityHook(BaseThincComponent):
|
|
"""
|
|
Experimental
|
|
|
|
A pipeline component to install a hook for supervised similarity into
|
|
Doc objects. Requires a Tensorizer to pre-process documents. The similarity
|
|
model can be any object obeying the Thinc Model interface. By default,
|
|
the model concatenates the elementwise mean and elementwise max of the two
|
|
tensors, and compares them using the Cauchy-like similarity function
|
|
from Chen (2013):
|
|
|
|
similarity = 1. / (1. + (W * (vec1-vec2)**2).sum())
|
|
|
|
Where W is a vector of dimension weights, initialized to 1.
|
|
"""
|
|
name = 'similarity'
|
|
def __init__(self, vocab, model=True, **cfg):
|
|
self.vocab = vocab
|
|
self.model = model
|
|
self.cfg = dict(cfg)
|
|
|
|
@classmethod
|
|
def Model(cls, length):
|
|
return Siamese(Pooling(max_pool, mean_pool), CauchySimilarity(length))
|
|
|
|
def __call__(self, doc):
|
|
'''Install similarity hook'''
|
|
doc.user_hooks['similarity'] = self.predict
|
|
return doc
|
|
|
|
def pipe(self, docs, **kwargs):
|
|
for doc in docs:
|
|
yield self(doc)
|
|
|
|
def predict(self, doc1, doc2):
|
|
return self.model.predict([(doc1.tensor, doc2.tensor)])
|
|
|
|
def update(self, doc1_tensor1_doc2_tensor2, golds, sgd=None, drop=0.):
|
|
doc1s, tensor1s, doc2s, tensor2s = doc1_tensor1_doc2_tensor2
|
|
sims, bp_sims = self.model.begin_update(zip(tensor1s, tensor2s),
|
|
drop=drop)
|
|
d_tensor1s, d_tensor2s = bp_sims(golds, sgd=sgd)
|
|
|
|
return d_tensor1s, d_tensor2s
|
|
|
|
def begin_training(self, _=tuple(), pipeline=None):
|
|
"""
|
|
Allocate model, using width from tensorizer in pipeline.
|
|
|
|
gold_tuples (iterable): Gold-standard training data.
|
|
pipeline (list): The pipeline the model is part of.
|
|
"""
|
|
if self.model is True:
|
|
self.model = self.Model(pipeline[0].model.nO)
|
|
|
|
|
|
class TextCategorizer(BaseThincComponent):
|
|
name = 'textcat'
|
|
|
|
@classmethod
|
|
def Model(cls, nr_class=1, width=64, **cfg):
|
|
return build_text_classifier(nr_class, width, **cfg)
|
|
|
|
def __init__(self, vocab, model=True, **cfg):
|
|
self.vocab = vocab
|
|
self.model = model
|
|
self.cfg = dict(cfg)
|
|
|
|
@property
|
|
def labels(self):
|
|
return self.cfg.get('labels', ['LABEL'])
|
|
|
|
@labels.setter
|
|
def labels(self, value):
|
|
self.cfg['labels'] = value
|
|
|
|
def __call__(self, doc):
|
|
scores = self.predict([doc])
|
|
self.set_annotations([doc], scores)
|
|
return doc
|
|
|
|
def pipe(self, stream, batch_size=128, n_threads=-1):
|
|
for docs in cytoolz.partition_all(batch_size, stream):
|
|
docs = list(docs)
|
|
scores = self.predict(docs)
|
|
self.set_annotations(docs, scores)
|
|
yield from docs
|
|
|
|
def predict(self, docs):
|
|
scores = self.model(docs)
|
|
scores = self.model.ops.asarray(scores)
|
|
return scores
|
|
|
|
def set_annotations(self, docs, scores):
|
|
for i, doc in enumerate(docs):
|
|
for j, label in enumerate(self.labels):
|
|
doc.cats[label] = float(scores[i, j])
|
|
|
|
def update(self, docs_tensors, golds, state=None, drop=0., sgd=None, losses=None):
|
|
docs, tensors = docs_tensors
|
|
scores, bp_scores = self.model.begin_update(docs, drop=drop)
|
|
loss, d_scores = self.get_loss(docs, golds, scores)
|
|
d_tensors = bp_scores(d_scores, sgd=sgd)
|
|
if losses is not None:
|
|
losses.setdefault(self.name, 0.0)
|
|
losses[self.name] += loss
|
|
return d_tensors
|
|
|
|
def get_loss(self, docs, golds, scores):
|
|
truths = numpy.zeros((len(golds), len(self.labels)), dtype='f')
|
|
for i, gold in enumerate(golds):
|
|
for j, label in enumerate(self.labels):
|
|
truths[i, j] = label in gold.cats
|
|
truths = self.model.ops.asarray(truths)
|
|
d_scores = (scores-truths) / scores.shape[0]
|
|
mean_square_error = ((scores-truths)**2).sum(axis=1).mean()
|
|
return mean_square_error, d_scores
|
|
|
|
def begin_training(self, gold_tuples=tuple(), pipeline=None):
|
|
if pipeline and getattr(pipeline[0], 'name', None) == 'tensorizer':
|
|
token_vector_width = pipeline[0].model.nO
|
|
else:
|
|
token_vector_width = 64
|
|
if self.model is True:
|
|
self.model = self.Model(len(self.labels), token_vector_width,
|
|
**self.cfg)
|
|
|
|
|
|
cdef class EntityRecognizer(LinearParser):
|
|
"""Annotate named entities on Doc objects."""
|
|
TransitionSystem = BiluoPushDown
|
|
|
|
feature_templates = get_feature_templates('ner')
|
|
|
|
def add_label(self, label):
|
|
LinearParser.add_label(self, label)
|
|
if isinstance(label, basestring):
|
|
label = self.vocab.strings[label]
|
|
|
|
|
|
cdef class BeamEntityRecognizer(BeamParser):
|
|
"""Annotate named entities on Doc objects."""
|
|
TransitionSystem = BiluoPushDown
|
|
|
|
feature_templates = get_feature_templates('ner')
|
|
|
|
def add_label(self, label):
|
|
LinearParser.add_label(self, label)
|
|
if isinstance(label, basestring):
|
|
label = self.vocab.strings[label]
|
|
|
|
|
|
cdef class DependencyParser(LinearParser):
|
|
TransitionSystem = ArcEager
|
|
feature_templates = get_feature_templates('basic')
|
|
|
|
def add_label(self, label):
|
|
LinearParser.add_label(self, label)
|
|
if isinstance(label, basestring):
|
|
label = self.vocab.strings[label]
|
|
|
|
|
|
cdef class NeuralDependencyParser(NeuralParser):
|
|
name = 'parser'
|
|
TransitionSystem = ArcEager
|
|
|
|
def __reduce__(self):
|
|
return (NeuralDependencyParser, (self.vocab, self.moves, self.model), None, None)
|
|
|
|
|
|
cdef class NeuralEntityRecognizer(NeuralParser):
|
|
name = 'ner'
|
|
TransitionSystem = BiluoPushDown
|
|
|
|
nr_feature = 6
|
|
|
|
def predict_confidences(self, docs):
|
|
tensors = [d.tensor for d in docs]
|
|
samples = []
|
|
for i in range(10):
|
|
states = self.parse_batch(docs, tensors, drop=0.3)
|
|
for state in states:
|
|
samples.append(self._get_entities(state))
|
|
|
|
def __reduce__(self):
|
|
return (NeuralEntityRecognizer, (self.vocab, self.moves, self.model), None, None)
|
|
|
|
|
|
cdef class BeamDependencyParser(BeamParser):
|
|
TransitionSystem = ArcEager
|
|
|
|
feature_templates = get_feature_templates('basic')
|
|
|
|
def add_label(self, label):
|
|
Parser.add_label(self, label)
|
|
if isinstance(label, basestring):
|
|
label = self.vocab.strings[label]
|
|
|
|
|
|
__all__ = ['Tagger', 'DependencyParser', 'EntityRecognizer', 'BeamDependencyParser',
|
|
'BeamEntityRecognizer', 'TokenVectorEnoder']
|