mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 18:07:26 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			145 lines
		
	
	
		
			4.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			145 lines
		
	
	
		
			4.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
from typing import Callable
 | 
						|
 | 
						|
from spacy import util
 | 
						|
from spacy.util import ensure_path, registry, load_model_from_config
 | 
						|
from spacy.kb import KnowledgeBase
 | 
						|
from spacy.vocab import Vocab
 | 
						|
from thinc.api import Config
 | 
						|
 | 
						|
from ..util import make_tempdir
 | 
						|
from numpy import zeros
 | 
						|
 | 
						|
 | 
						|
def test_serialize_kb_disk(en_vocab):
 | 
						|
    # baseline assertions
 | 
						|
    kb1 = _get_dummy_kb(en_vocab)
 | 
						|
    _check_kb(kb1)
 | 
						|
 | 
						|
    # dumping to file & loading back in
 | 
						|
    with make_tempdir() as d:
 | 
						|
        dir_path = ensure_path(d)
 | 
						|
        if not dir_path.exists():
 | 
						|
            dir_path.mkdir()
 | 
						|
        file_path = dir_path / "kb"
 | 
						|
        kb1.to_disk(str(file_path))
 | 
						|
        kb2 = KnowledgeBase(vocab=en_vocab, entity_vector_length=3)
 | 
						|
        kb2.from_disk(str(file_path))
 | 
						|
 | 
						|
    # final assertions
 | 
						|
    _check_kb(kb2)
 | 
						|
 | 
						|
 | 
						|
def _get_dummy_kb(vocab):
 | 
						|
    kb = KnowledgeBase(vocab, entity_vector_length=3)
 | 
						|
    kb.add_entity(entity="Q53", freq=33, entity_vector=[0, 5, 3])
 | 
						|
    kb.add_entity(entity="Q17", freq=2, entity_vector=[7, 1, 0])
 | 
						|
    kb.add_entity(entity="Q007", freq=7, entity_vector=[0, 0, 7])
 | 
						|
    kb.add_entity(entity="Q44", freq=342, entity_vector=[4, 4, 4])
 | 
						|
 | 
						|
    kb.add_alias(alias="double07", entities=["Q17", "Q007"], probabilities=[0.1, 0.9])
 | 
						|
    kb.add_alias(
 | 
						|
        alias="guy",
 | 
						|
        entities=["Q53", "Q007", "Q17", "Q44"],
 | 
						|
        probabilities=[0.3, 0.3, 0.2, 0.1],
 | 
						|
    )
 | 
						|
    kb.add_alias(alias="random", entities=["Q007"], probabilities=[1.0])
 | 
						|
 | 
						|
    return kb
 | 
						|
 | 
						|
 | 
						|
def _check_kb(kb):
 | 
						|
    # check entities
 | 
						|
    assert kb.get_size_entities() == 4
 | 
						|
    for entity_string in ["Q53", "Q17", "Q007", "Q44"]:
 | 
						|
        assert entity_string in kb.get_entity_strings()
 | 
						|
    for entity_string in ["", "Q0"]:
 | 
						|
        assert entity_string not in kb.get_entity_strings()
 | 
						|
 | 
						|
    # check aliases
 | 
						|
    assert kb.get_size_aliases() == 3
 | 
						|
    for alias_string in ["double07", "guy", "random"]:
 | 
						|
        assert alias_string in kb.get_alias_strings()
 | 
						|
    for alias_string in ["nothingness", "", "randomnoise"]:
 | 
						|
        assert alias_string not in kb.get_alias_strings()
 | 
						|
 | 
						|
    # check candidates & probabilities
 | 
						|
    candidates = sorted(kb.get_alias_candidates("double07"), key=lambda x: x.entity_)
 | 
						|
    assert len(candidates) == 2
 | 
						|
 | 
						|
    assert candidates[0].entity_ == "Q007"
 | 
						|
    assert 6.999 < candidates[0].entity_freq < 7.01
 | 
						|
    assert candidates[0].entity_vector == [0, 0, 7]
 | 
						|
    assert candidates[0].alias_ == "double07"
 | 
						|
    assert 0.899 < candidates[0].prior_prob < 0.901
 | 
						|
 | 
						|
    assert candidates[1].entity_ == "Q17"
 | 
						|
    assert 1.99 < candidates[1].entity_freq < 2.01
 | 
						|
    assert candidates[1].entity_vector == [7, 1, 0]
 | 
						|
    assert candidates[1].alias_ == "double07"
 | 
						|
    assert 0.099 < candidates[1].prior_prob < 0.101
 | 
						|
 | 
						|
 | 
						|
def test_serialize_subclassed_kb():
 | 
						|
    """Check that IO of a custom KB works fine as part of an EL pipe."""
 | 
						|
 | 
						|
    config_string = """
 | 
						|
    [nlp]
 | 
						|
    lang = "en"
 | 
						|
    pipeline = ["entity_linker"]
 | 
						|
 | 
						|
    [components]
 | 
						|
 | 
						|
    [components.entity_linker]
 | 
						|
    factory = "entity_linker"
 | 
						|
 | 
						|
    [initialize]
 | 
						|
 | 
						|
    [initialize.components]
 | 
						|
 | 
						|
    [initialize.components.entity_linker]
 | 
						|
 | 
						|
    [initialize.components.entity_linker.kb_loader]
 | 
						|
    @misc = "spacy.CustomKB.v1"
 | 
						|
    entity_vector_length = 342
 | 
						|
    custom_field = 666
 | 
						|
    """
 | 
						|
 | 
						|
    class SubKnowledgeBase(KnowledgeBase):
 | 
						|
        def __init__(self, vocab, entity_vector_length, custom_field):
 | 
						|
            super().__init__(vocab, entity_vector_length)
 | 
						|
            self.custom_field = custom_field
 | 
						|
 | 
						|
    @registry.misc("spacy.CustomKB.v1")
 | 
						|
    def custom_kb(
 | 
						|
        entity_vector_length: int, custom_field: int
 | 
						|
    ) -> Callable[[Vocab], KnowledgeBase]:
 | 
						|
        def custom_kb_factory(vocab):
 | 
						|
            kb = SubKnowledgeBase(
 | 
						|
                vocab=vocab,
 | 
						|
                entity_vector_length=entity_vector_length,
 | 
						|
                custom_field=custom_field,
 | 
						|
            )
 | 
						|
            kb.add_entity("random_entity", 0.0, zeros(entity_vector_length))
 | 
						|
            return kb
 | 
						|
 | 
						|
        return custom_kb_factory
 | 
						|
 | 
						|
    config = Config().from_str(config_string)
 | 
						|
    nlp = load_model_from_config(config, auto_fill=True)
 | 
						|
    nlp.initialize()
 | 
						|
 | 
						|
    entity_linker = nlp.get_pipe("entity_linker")
 | 
						|
    assert type(entity_linker.kb) == SubKnowledgeBase
 | 
						|
    assert entity_linker.kb.entity_vector_length == 342
 | 
						|
    assert entity_linker.kb.custom_field == 666
 | 
						|
 | 
						|
    # Make sure the custom KB is serialized correctly
 | 
						|
    with make_tempdir() as tmp_dir:
 | 
						|
        nlp.to_disk(tmp_dir)
 | 
						|
        nlp2 = util.load_model_from_path(tmp_dir)
 | 
						|
        entity_linker2 = nlp2.get_pipe("entity_linker")
 | 
						|
        # After IO, the KB is the standard one
 | 
						|
        assert type(entity_linker2.kb) == KnowledgeBase
 | 
						|
        assert entity_linker2.kb.entity_vector_length == 342
 | 
						|
        assert not hasattr(entity_linker2.kb, "custom_field")
 |