mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 01:48:04 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			87 lines
		
	
	
		
			1.8 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			87 lines
		
	
	
		
			1.8 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
# coding: utf8
 | 
						|
from __future__ import unicode_literals
 | 
						|
 | 
						|
import pytest
 | 
						|
from spacy._ml import Tok2Vec
 | 
						|
from spacy.vocab import Vocab
 | 
						|
from spacy.syntax.arc_eager import ArcEager
 | 
						|
from spacy.syntax.nn_parser import Parser
 | 
						|
from spacy.tokens.doc import Doc
 | 
						|
from spacy.gold import GoldParse
 | 
						|
 | 
						|
 | 
						|
@pytest.fixture
 | 
						|
def vocab():
 | 
						|
    return Vocab()
 | 
						|
 | 
						|
 | 
						|
@pytest.fixture
 | 
						|
def arc_eager(vocab):
 | 
						|
    actions = ArcEager.get_actions(left_labels=["L"], right_labels=["R"])
 | 
						|
    return ArcEager(vocab.strings, actions)
 | 
						|
 | 
						|
 | 
						|
@pytest.fixture
 | 
						|
def tok2vec():
 | 
						|
    return Tok2Vec(8, 100)
 | 
						|
 | 
						|
 | 
						|
@pytest.fixture
 | 
						|
def parser(vocab, arc_eager):
 | 
						|
    return Parser(vocab, moves=arc_eager, model=None)
 | 
						|
 | 
						|
 | 
						|
@pytest.fixture
 | 
						|
def model(arc_eager, tok2vec):
 | 
						|
    return Parser.Model(arc_eager.n_moves, token_vector_width=tok2vec.nO)[0]
 | 
						|
 | 
						|
 | 
						|
@pytest.fixture
 | 
						|
def doc(vocab):
 | 
						|
    return Doc(vocab, words=["a", "b", "c"])
 | 
						|
 | 
						|
 | 
						|
@pytest.fixture
 | 
						|
def gold(doc):
 | 
						|
    return GoldParse(doc, heads=[1, 1, 1], deps=["L", "ROOT", "R"])
 | 
						|
 | 
						|
 | 
						|
def test_can_init_nn_parser(parser):
 | 
						|
    assert parser.model is None
 | 
						|
 | 
						|
 | 
						|
def test_build_model(parser):
 | 
						|
    parser.model = Parser.Model(parser.moves.n_moves, hist_size=0)[0]
 | 
						|
    assert parser.model is not None
 | 
						|
 | 
						|
 | 
						|
def test_predict_doc(parser, tok2vec, model, doc):
 | 
						|
    doc.tensor = tok2vec([doc])[0]
 | 
						|
    parser.model = model
 | 
						|
    parser(doc)
 | 
						|
 | 
						|
 | 
						|
def test_update_doc(parser, model, doc, gold):
 | 
						|
    parser.model = model
 | 
						|
 | 
						|
    def optimize(weights, gradient, key=None):
 | 
						|
        weights -= 0.001 * gradient
 | 
						|
 | 
						|
    parser.update([doc], [gold], sgd=optimize)
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.xfail
 | 
						|
def test_predict_doc_beam(parser, model, doc):
 | 
						|
    parser.model = model
 | 
						|
    parser(doc, beam_width=32, beam_density=0.001)
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.xfail
 | 
						|
def test_update_doc_beam(parser, model, doc, gold):
 | 
						|
    parser.model = model
 | 
						|
 | 
						|
    def optimize(weights, gradient, key=None):
 | 
						|
        weights -= 0.001 * gradient
 | 
						|
 | 
						|
    parser.update_beam([doc], [gold], sgd=optimize)
 |