spaCy/spacy/gold/converters/conllu2json.py
Matthew Honnibal 8c29268749
Improve spacy.gold (no GoldParse, no json format!) (#5555)
* Update errors

* Remove beam for now (maybe)

Remove beam_utils

Update setup.py

Remove beam

* Remove GoldParse

WIP on removing goldparse

Get ArcEager compiling after GoldParse excise

Update setup.py

Get spacy.syntax compiling after removing GoldParse

Rename NewExample -> Example and clean up

Clean html files

Start updating tests

Update Morphologizer

* fix error numbers

* fix merge conflict

* informative error when calling to_array with wrong field

* fix error catching

* fixing language and scoring tests

* start testing get_aligned

* additional tests for new get_aligned function

* Draft create_gold_state for arc_eager oracle

* Fix import

* Fix import

* Remove TokenAnnotation code from nonproj

* fixing NER one-to-many alignment

* Fix many-to-one IOB codes

* fix test for misaligned

* attempt to fix cases with weird spaces

* fix spaces

* test_gold_biluo_different_tokenization works

* allow None as BILUO annotation

* fixed some tests + WIP roundtrip unit test

* add spaces to json output format

* minibatch utiltiy can deal with strings, docs or examples

* fix augment (needs further testing)

* various fixes in scripts - needs to be further tested

* fix test_cli

* cleanup

* correct silly typo

* add support for MORPH in to/from_array, fix morphologizer overfitting test

* fix tagger

* fix entity linker

* ensure test keeps working with non-linked entities

* pipe() takes docs, not examples

* small bug fix

* textcat bugfix

* throw informative error when running the components with the wrong type of objects

* fix parser tests to work with example (most still failing)

* fix BiluoPushDown parsing entities

* small fixes

* bugfix tok2vec

* fix renames and simple_ner labels

* various small fixes

* prevent writing dummy values like deps because that could interfer with sent_start values

* fix the fix

* implement split_sent with aligned SENT_START attribute

* test for split sentences with various alignment issues, works

* Return ArcEagerGoldParse from ArcEager

* Update parser and NER gold stuff

* Draft new GoldCorpus class

* add links to to_dict

* clean up

* fix test checking for variants

* Fix oracles

* Start updating converters

* Move converters under spacy.gold

* Move things around

* Fix naming

* Fix name

* Update converter to produce DocBin

* Update converters

* Allow DocBin to take list of Doc objects.

* Make spacy convert output docbin

* Fix import

* Fix docbin

* Fix compile in ArcEager

* Fix import

* Serialize all attrs by default

* Update converter

* Remove jsonl converter

* Add json2docs converter

* Draft Corpus class for DocBin

* Work on train script

* Update Corpus

* Update DocBin

* Allocate Doc before starting to add words

* Make doc.from_array several times faster

* Update train.py

* Fix Corpus

* Fix parser model

* Start debugging arc_eager oracle

* Update header

* Fix parser declaration

* Xfail some tests

* Skip tests that cause crashes

* Skip test causing segfault

* Remove GoldCorpus

* Update imports

* Update after removing GoldCorpus

* Fix module name of corpus

* Fix mimport

* Work on parser oracle

* Update arc_eager oracle

* Restore ArcEager.get_cost function

* Update transition system

* Update test_arc_eager_oracle

* Remove beam test

* Update test

* Unskip

* Unskip tests

* add links to to_dict

* clean up

* fix test checking for variants

* Allow DocBin to take list of Doc objects.

* Fix compile in ArcEager

* Serialize all attrs by default

Move converters under spacy.gold

Move things around

Fix naming

Fix name

Update converter to produce DocBin

Update converters

Make spacy convert output docbin

Fix import

Fix docbin

Fix import

Update converter

Remove jsonl converter

Add json2docs converter

* Allocate Doc before starting to add words

* Make doc.from_array several times faster

* Start updating converters

* Work on train script

* Draft Corpus class for DocBin

Update Corpus

Fix Corpus

* Update DocBin

Add missing strings when serializing

* Update train.py

* Fix parser model

* Start debugging arc_eager oracle

* Update header

* Fix parser declaration

* Xfail some tests

Skip tests that cause crashes

Skip test causing segfault

* Remove GoldCorpus

Update imports

Update after removing GoldCorpus

Fix module name of corpus

Fix mimport

* Work on parser oracle

Update arc_eager oracle

Restore ArcEager.get_cost function

Update transition system

* Update tests

Remove beam test

Update test

Unskip

Unskip tests

* Add get_aligned_parse method in Example

Fix Example.get_aligned_parse

* Add kwargs to Corpus.dev_dataset to match train_dataset

* Update nonproj

* Use get_aligned_parse in ArcEager

* Add another arc-eager oracle test

* Remove Example.doc property

Remove Example.doc

Remove Example.doc

Remove Example.doc

Remove Example.doc

* Update ArcEager oracle

Fix Break oracle

* Debugging

* Fix Corpus

* Fix eg.doc

* Format

* small fixes

* limit arg for Corpus

* fix test_roundtrip_docs_to_docbin

* fix test_make_orth_variants

* fix add_label test

* Update tests

* avoid writing temp dir in json2docs, fixing 4402 test

* Update test

* Add missing costs to NER oracle

* Update test

* Work on Example.get_aligned_ner method

* Clean up debugging

* Xfail tests

* Remove prints

* Remove print

* Xfail some tests

* Replace unseen labels for parser

* Update test

* Update test

* Xfail test

* Fix Corpus

* fix imports

* fix docs_to_json

* various small fixes

* cleanup

* Support gold_preproc in Corpus

* Support gold_preproc

* Pass gold_preproc setting into corpus

* Remove debugging

* Fix gold_preproc

* Fix json2docs converter

* Fix convert command

* Fix flake8

* Fix import

* fix output_dir (converted to Path by typer)

* fix var

* bugfix: update states after creating golds to avoid out of bounds indexing

* Improve efficiency of ArEager oracle

* pull merge_sent into iob2docs to avoid Doc creation for each line

* fix asserts

* bugfix excl Span.end in iob2docs

* Support max_length in Corpus

* Fix arc_eager oracle

* Filter out uannotated sentences in NER

* Remove debugging in parser

* Simplify NER alignment

* Fix conversion of NER data

* Fix NER init_gold_batch

* Tweak efficiency of precomputable affine

* Update onto-json default

* Update gold test for NER

* Fix parser test

* Update test

* Add NER data test

* Fix convert for single file

* Fix test

* Hack scorer to avoid evaluating non-nered data

* Fix handling of NER data in Example

* Output unlabelled spans from O biluo tags in iob_utils

* Fix unset variable

* Return kept examples from init_gold_batch

* Return examples from init_gold_batch

* Dont return Example from init_gold_batch

* Set spaces on gold doc after conversion

* Add test

* Fix spaces reading

* Improve NER alignment

* Improve handling of missing values in NER

* Restore the 'cutting' in parser training

* Add assertion

* Print epochs

* Restore random cuts in parser/ner training

* Implement Doc.copy

* Implement Example.copy

* Copy examples at the start of Language.update

* Don't unset example docs

* Tweak parser model slightly

* attempt to fix _guess_spaces

* _add_entities_to_doc first, so that links don't get overwritten

* fixing get_aligned_ner for one-to-many

* fix indexing into x_text

* small fix biluo_tags_from_offsets

* Add onto-ner config

* Simplify NER alignment

* Fix NER scoring for partially annotated documents

* fix indexing into x_text

* fix test_cli failing tests by ignoring spans in doc.ents with empty label

* Fix limit

* Improve NER alignment

* Fix count_train

* Remove print statement

* fix tests, we're not having nothing but None

* fix clumsy fingers

* Fix tests

* Fix doc.ents

* Remove empty docs in Corpus and improve limit

* Update config

Co-authored-by: svlandeg <sofie.vanlandeghem@gmail.com>
2020-06-26 19:34:12 +02:00

332 lines
11 KiB
Python

import re
from .conll_ner2docs import n_sents_info
from ...gold import Example
from ...gold import iob_to_biluo, spans_from_biluo_tags
from ...language import Language
from ...tokens import Doc, Token
from wasabi import Printer
def conllu2json(
input_data,
n_sents=10,
append_morphology=False,
ner_map=None,
merge_subtokens=False,
no_print=False,
**_
):
"""
Convert conllu files into JSON format for use with train cli.
append_morphology parameter enables appending morphology to tags, which is
useful for languages such as Spanish, where UD tags are not so rich.
Extract NER tags if available and convert them so that they follow
BILUO and the Wikipedia scheme
"""
MISC_NER_PATTERN = "^((?:name|NE)=)?([BILU])-([A-Z_]+)|O$"
msg = Printer(no_print=no_print)
n_sents_info(msg, n_sents)
docs = []
raw = ""
sentences = []
conll_data = read_conllx(
input_data,
append_morphology=append_morphology,
ner_tag_pattern=MISC_NER_PATTERN,
ner_map=ner_map,
merge_subtokens=merge_subtokens,
)
has_ner_tags = has_ner(input_data, MISC_NER_PATTERN)
for i, example in enumerate(conll_data):
raw += example.text
sentences.append(
generate_sentence(
example.to_dict(), has_ner_tags, MISC_NER_PATTERN, ner_map=ner_map,
)
)
# Real-sized documents could be extracted using the comments on the
# conllu document
if len(sentences) % n_sents == 0:
doc = create_json_doc(raw, sentences, i)
docs.append(doc)
raw = ""
sentences = []
if sentences:
doc = create_json_doc(raw, sentences, i)
docs.append(doc)
return docs
def has_ner(input_data, ner_tag_pattern):
"""
Check the MISC column for NER tags.
"""
for sent in input_data.strip().split("\n\n"):
lines = sent.strip().split("\n")
if lines:
while lines[0].startswith("#"):
lines.pop(0)
for line in lines:
parts = line.split("\t")
id_, word, lemma, pos, tag, morph, head, dep, _1, misc = parts
for misc_part in misc.split("|"):
if re.match(ner_tag_pattern, misc_part):
return True
return False
def read_conllx(
input_data,
append_morphology=False,
merge_subtokens=False,
ner_tag_pattern="",
ner_map=None,
):
""" Yield examples, one for each sentence """
vocab = Language.Defaults.create_vocab() # need vocab to make a minimal Doc
for sent in input_data.strip().split("\n\n"):
lines = sent.strip().split("\n")
if lines:
while lines[0].startswith("#"):
lines.pop(0)
example = example_from_conllu_sentence(
vocab,
lines,
ner_tag_pattern,
merge_subtokens=merge_subtokens,
append_morphology=append_morphology,
ner_map=ner_map,
)
yield example
def get_entities(lines, tag_pattern, ner_map=None):
"""Find entities in the MISC column according to the pattern and map to
final entity type with `ner_map` if mapping present. Entity tag is 'O' if
the pattern is not matched.
lines (str): CONLL-U lines for one sentences
tag_pattern (str): Regex pattern for entity tag
ner_map (dict): Map old NER tag names to new ones, '' maps to O.
RETURNS (list): List of BILUO entity tags
"""
miscs = []
for line in lines:
parts = line.split("\t")
id_, word, lemma, pos, tag, morph, head, dep, _1, misc = parts
if "-" in id_ or "." in id_:
continue
miscs.append(misc)
iob = []
for misc in miscs:
iob_tag = "O"
for misc_part in misc.split("|"):
tag_match = re.match(tag_pattern, misc_part)
if tag_match:
prefix = tag_match.group(2)
suffix = tag_match.group(3)
if prefix and suffix:
iob_tag = prefix + "-" + suffix
if ner_map:
suffix = ner_map.get(suffix, suffix)
if suffix == "":
iob_tag = "O"
else:
iob_tag = prefix + "-" + suffix
break
iob.append(iob_tag)
return iob_to_biluo(iob)
def generate_sentence(example_dict, has_ner_tags, tag_pattern, ner_map=None):
sentence = {}
tokens = []
token_annotation = example_dict["token_annotation"]
for i, id_ in enumerate(token_annotation["ids"]):
token = {}
token["id"] = id_
token["orth"] = token_annotation["words"][i]
token["tag"] = token_annotation["tags"][i]
token["pos"] = token_annotation["pos"][i]
token["lemma"] = token_annotation["lemmas"][i]
token["morph"] = token_annotation["morphs"][i]
token["head"] = token_annotation["heads"][i] - i
token["dep"] = token_annotation["deps"][i]
if has_ner_tags:
token["ner"] = example_dict["doc_annotation"]["entities"][i]
tokens.append(token)
sentence["tokens"] = tokens
return sentence
def create_json_doc(raw, sentences, id_):
doc = {}
paragraph = {}
doc["id"] = id_
doc["paragraphs"] = []
paragraph["raw"] = raw.strip()
paragraph["sentences"] = sentences
doc["paragraphs"].append(paragraph)
return doc
def example_from_conllu_sentence(
vocab,
lines,
ner_tag_pattern,
merge_subtokens=False,
append_morphology=False,
ner_map=None,
):
"""Create an Example from the lines for one CoNLL-U sentence, merging
subtokens and appending morphology to tags if required.
lines (str): The non-comment lines for a CoNLL-U sentence
ner_tag_pattern (str): The regex pattern for matching NER in MISC col
RETURNS (Example): An example containing the annotation
"""
# create a Doc with each subtoken as its own token
# if merging subtokens, each subtoken orth is the merged subtoken form
if not Token.has_extension("merged_orth"):
Token.set_extension("merged_orth", default="")
if not Token.has_extension("merged_lemma"):
Token.set_extension("merged_lemma", default="")
if not Token.has_extension("merged_morph"):
Token.set_extension("merged_morph", default="")
if not Token.has_extension("merged_spaceafter"):
Token.set_extension("merged_spaceafter", default="")
words, spaces, tags, poses, morphs, lemmas = [], [], [], [], [], []
heads, deps = [], []
subtok_word = ""
in_subtok = False
for i in range(len(lines)):
line = lines[i]
parts = line.split("\t")
id_, word, lemma, pos, tag, morph, head, dep, _1, misc = parts
if "." in id_:
continue
if "-" in id_:
in_subtok = True
if "-" in id_:
in_subtok = True
subtok_word = word
subtok_start, subtok_end = id_.split("-")
subtok_spaceafter = "SpaceAfter=No" not in misc
continue
if merge_subtokens and in_subtok:
words.append(subtok_word)
else:
words.append(word)
if in_subtok:
if id_ == subtok_end:
spaces.append(subtok_spaceafter)
else:
spaces.append(False)
elif "SpaceAfter=No" in misc:
spaces.append(False)
else:
spaces.append(True)
if in_subtok and id_ == subtok_end:
subtok_word = ""
in_subtok = False
id_ = int(id_) - 1
head = (int(head) - 1) if head not in ("0", "_") else id_
tag = pos if tag == "_" else tag
morph = morph if morph != "_" else ""
dep = "ROOT" if dep == "root" else dep
lemmas.append(lemma)
poses.append(pos)
tags.append(tag)
morphs.append(morph)
heads.append(head)
deps.append(dep)
doc = Doc(vocab, words=words, spaces=spaces)
for i in range(len(doc)):
doc[i].tag_ = tags[i]
doc[i].pos_ = poses[i]
doc[i].dep_ = deps[i]
doc[i].lemma_ = lemmas[i]
doc[i].head = doc[heads[i]]
doc[i]._.merged_orth = words[i]
doc[i]._.merged_morph = morphs[i]
doc[i]._.merged_lemma = lemmas[i]
doc[i]._.merged_spaceafter = spaces[i]
ents = get_entities(lines, ner_tag_pattern, ner_map)
doc.ents = spans_from_biluo_tags(doc, ents)
doc.is_parsed = True
doc.is_tagged = True
if merge_subtokens:
doc = merge_conllu_subtokens(lines, doc)
# create Example from custom Doc annotation
words, spaces, tags, morphs, lemmas = [], [], [], [], []
for i, t in enumerate(doc):
words.append(t._.merged_orth)
lemmas.append(t._.merged_lemma)
spaces.append(t._.merged_spaceafter)
morphs.append(t._.merged_morph)
if append_morphology and t._.merged_morph:
tags.append(t.tag_ + "__" + t._.merged_morph)
else:
tags.append(t.tag_)
doc_x = Doc(vocab, words=words, spaces=spaces)
ref_dict = Example(doc_x, reference=doc).to_dict()
ref_dict["words"] = words
ref_dict["lemmas"] = lemmas
ref_dict["spaces"] = spaces
ref_dict["tags"] = tags
ref_dict["morphs"] = morphs
example = Example.from_dict(doc_x, ref_dict)
return example
def merge_conllu_subtokens(lines, doc):
# identify and process all subtoken spans to prepare attrs for merging
subtok_spans = []
for line in lines:
parts = line.split("\t")
id_, word, lemma, pos, tag, morph, head, dep, _1, misc = parts
if "-" in id_:
subtok_start, subtok_end = id_.split("-")
subtok_span = doc[int(subtok_start) - 1 : int(subtok_end)]
subtok_spans.append(subtok_span)
# create merged tag, morph, and lemma values
tags = []
morphs = {}
lemmas = []
for token in subtok_span:
tags.append(token.tag_)
lemmas.append(token.lemma_)
if token._.merged_morph:
for feature in token._.merged_morph.split("|"):
field, values = feature.split("=", 1)
if field not in morphs:
morphs[field] = set()
for value in values.split(","):
morphs[field].add(value)
# create merged features for each morph field
for field, values in morphs.items():
morphs[field] = field + "=" + ",".join(sorted(values))
# set the same attrs on all subtok tokens so that whatever head the
# retokenizer chooses, the final attrs are available on that token
for token in subtok_span:
token._.merged_orth = token.orth_
token._.merged_lemma = " ".join(lemmas)
token.tag_ = "_".join(tags)
token._.merged_morph = "|".join(sorted(morphs.values()))
token._.merged_spaceafter = (
True if subtok_span[-1].whitespace_ else False
)
with doc.retokenize() as retokenizer:
for span in subtok_spans:
retokenizer.merge(span)
return doc