mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 09:57:26 +03:00 
			
		
		
		
	* Refactor Docs.is_ flags
* Add derived `Doc.has_annotation` method
  * `Doc.has_annotation(attr)` returns `True` for partial annotation
  * `Doc.has_annotation(attr, require_complete=True)` returns `True` for
    complete annotation
* Add deprecation warnings to `is_tagged`, `is_parsed`, `is_sentenced`
and `is_nered`
* Add `Doc._get_array_attrs()`, which returns a full list of `Doc` attrs
for use with `Doc.to_array`, `Doc.to_bytes` and `Doc.from_docs`. The
list is the `DocBin` attributes list plus `SPACY` and `LENGTH`.
Notes on `Doc.has_annotation`:
* `HEAD` is converted to `DEP` because heads don't have an unset state
* Accept `IS_SENT_START` as a synonym of `SENT_START`
Additional changes:
* Add `NORM`, `ENT_ID` and `SENT_START` to default attributes for
`DocBin`
* In `Doc.from_array()` the presence of `DEP` causes `HEAD` to override
`SENT_START`
* In `Doc.from_array()` using `attrs` other than
`Doc._get_array_attrs()` (i.e., a user's custom list rather than our
default internal list) with both `HEAD` and `SENT_START` shows a warning
that `HEAD` will override `SENT_START`
* `set_children_from_heads` does not require dependency labels to set
sentence boundaries and sets `sent_start` for all non-sentence starts to
`-1`
* Fix call to set_children_form_heads
Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com>
		
	
			
		
			
				
	
	
		
			457 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			457 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
import pytest
 | 
						|
import numpy
 | 
						|
from spacy.tokens import Doc, Span
 | 
						|
from spacy.vocab import Vocab
 | 
						|
from spacy.lexeme import Lexeme
 | 
						|
from spacy.lang.en import English
 | 
						|
from spacy.attrs import ENT_TYPE, ENT_IOB, SENT_START, HEAD, DEP, MORPH
 | 
						|
 | 
						|
from ..util import get_doc
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.parametrize("text", [["one", "two", "three"]])
 | 
						|
def test_doc_api_compare_by_string_position(en_vocab, text):
 | 
						|
    doc = Doc(en_vocab, words=text)
 | 
						|
    # Get the tokens in this order, so their ID ordering doesn't match the idx
 | 
						|
    token3 = doc[-1]
 | 
						|
    token2 = doc[-2]
 | 
						|
    token1 = doc[-1]
 | 
						|
    token1, token2, token3 = doc
 | 
						|
    assert token1 < token2 < token3
 | 
						|
    assert not token1 > token2
 | 
						|
    assert token2 > token1
 | 
						|
    assert token2 <= token3
 | 
						|
    assert token3 >= token1
 | 
						|
 | 
						|
 | 
						|
def test_doc_api_getitem(en_tokenizer):
 | 
						|
    text = "Give it back! He pleaded."
 | 
						|
    tokens = en_tokenizer(text)
 | 
						|
    assert tokens[0].text == "Give"
 | 
						|
    assert tokens[-1].text == "."
 | 
						|
    with pytest.raises(IndexError):
 | 
						|
        tokens[len(tokens)]
 | 
						|
 | 
						|
    def to_str(span):
 | 
						|
        return "/".join(token.text for token in span)
 | 
						|
 | 
						|
    span = tokens[1:1]
 | 
						|
    assert not to_str(span)
 | 
						|
    span = tokens[1:4]
 | 
						|
    assert to_str(span) == "it/back/!"
 | 
						|
    span = tokens[1:4:1]
 | 
						|
    assert to_str(span) == "it/back/!"
 | 
						|
    with pytest.raises(ValueError):
 | 
						|
        tokens[1:4:2]
 | 
						|
    with pytest.raises(ValueError):
 | 
						|
        tokens[1:4:-1]
 | 
						|
 | 
						|
    span = tokens[-3:6]
 | 
						|
    assert to_str(span) == "He/pleaded"
 | 
						|
    span = tokens[4:-1]
 | 
						|
    assert to_str(span) == "He/pleaded"
 | 
						|
    span = tokens[-5:-3]
 | 
						|
    assert to_str(span) == "back/!"
 | 
						|
    span = tokens[5:4]
 | 
						|
    assert span.start == span.end == 5 and not to_str(span)
 | 
						|
    span = tokens[4:-3]
 | 
						|
    assert span.start == span.end == 4 and not to_str(span)
 | 
						|
 | 
						|
    span = tokens[:]
 | 
						|
    assert to_str(span) == "Give/it/back/!/He/pleaded/."
 | 
						|
    span = tokens[4:]
 | 
						|
    assert to_str(span) == "He/pleaded/."
 | 
						|
    span = tokens[:4]
 | 
						|
    assert to_str(span) == "Give/it/back/!"
 | 
						|
    span = tokens[:-3]
 | 
						|
    assert to_str(span) == "Give/it/back/!"
 | 
						|
    span = tokens[-3:]
 | 
						|
    assert to_str(span) == "He/pleaded/."
 | 
						|
 | 
						|
    span = tokens[4:50]
 | 
						|
    assert to_str(span) == "He/pleaded/."
 | 
						|
    span = tokens[-50:4]
 | 
						|
    assert to_str(span) == "Give/it/back/!"
 | 
						|
    span = tokens[-50:-40]
 | 
						|
    assert span.start == span.end == 0 and not to_str(span)
 | 
						|
    span = tokens[40:50]
 | 
						|
    assert span.start == span.end == 7 and not to_str(span)
 | 
						|
 | 
						|
    span = tokens[1:4]
 | 
						|
    assert span[0].orth_ == "it"
 | 
						|
    subspan = span[:]
 | 
						|
    assert to_str(subspan) == "it/back/!"
 | 
						|
    subspan = span[:2]
 | 
						|
    assert to_str(subspan) == "it/back"
 | 
						|
    subspan = span[1:]
 | 
						|
    assert to_str(subspan) == "back/!"
 | 
						|
    subspan = span[:-1]
 | 
						|
    assert to_str(subspan) == "it/back"
 | 
						|
    subspan = span[-2:]
 | 
						|
    assert to_str(subspan) == "back/!"
 | 
						|
    subspan = span[1:2]
 | 
						|
    assert to_str(subspan) == "back"
 | 
						|
    subspan = span[-2:-1]
 | 
						|
    assert to_str(subspan) == "back"
 | 
						|
    subspan = span[-50:50]
 | 
						|
    assert to_str(subspan) == "it/back/!"
 | 
						|
    subspan = span[50:-50]
 | 
						|
    assert subspan.start == subspan.end == 4 and not to_str(subspan)
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.parametrize(
 | 
						|
    "text", ["Give it back! He pleaded.", " Give it back! He pleaded. "]
 | 
						|
)
 | 
						|
def test_doc_api_serialize(en_tokenizer, text):
 | 
						|
    tokens = en_tokenizer(text)
 | 
						|
    tokens[0].lemma_ = "lemma"
 | 
						|
    tokens[0].norm_ = "norm"
 | 
						|
    tokens.ents = [(tokens.vocab.strings["PRODUCT"], 0, 1)]
 | 
						|
    tokens[0].ent_kb_id_ = "ent_kb_id"
 | 
						|
    new_tokens = Doc(tokens.vocab).from_bytes(tokens.to_bytes())
 | 
						|
    assert tokens.text == new_tokens.text
 | 
						|
    assert [t.text for t in tokens] == [t.text for t in new_tokens]
 | 
						|
    assert [t.orth for t in tokens] == [t.orth for t in new_tokens]
 | 
						|
    assert new_tokens[0].lemma_ == "lemma"
 | 
						|
    assert new_tokens[0].norm_ == "norm"
 | 
						|
    assert new_tokens[0].ent_kb_id_ == "ent_kb_id"
 | 
						|
 | 
						|
    new_tokens = Doc(tokens.vocab).from_bytes(
 | 
						|
        tokens.to_bytes(exclude=["tensor"]), exclude=["tensor"]
 | 
						|
    )
 | 
						|
    assert tokens.text == new_tokens.text
 | 
						|
    assert [t.text for t in tokens] == [t.text for t in new_tokens]
 | 
						|
    assert [t.orth for t in tokens] == [t.orth for t in new_tokens]
 | 
						|
 | 
						|
    new_tokens = Doc(tokens.vocab).from_bytes(
 | 
						|
        tokens.to_bytes(exclude=["sentiment"]), exclude=["sentiment"]
 | 
						|
    )
 | 
						|
    assert tokens.text == new_tokens.text
 | 
						|
    assert [t.text for t in tokens] == [t.text for t in new_tokens]
 | 
						|
    assert [t.orth for t in tokens] == [t.orth for t in new_tokens]
 | 
						|
 | 
						|
 | 
						|
def test_doc_api_set_ents(en_tokenizer):
 | 
						|
    text = "I use goggle chrone to surf the web"
 | 
						|
    tokens = en_tokenizer(text)
 | 
						|
    assert len(tokens.ents) == 0
 | 
						|
    tokens.ents = [(tokens.vocab.strings["PRODUCT"], 2, 4)]
 | 
						|
    assert len(list(tokens.ents)) == 1
 | 
						|
    assert [t.ent_iob for t in tokens] == [0, 0, 3, 1, 0, 0, 0, 0]
 | 
						|
    assert tokens.ents[0].label_ == "PRODUCT"
 | 
						|
    assert tokens.ents[0].start == 2
 | 
						|
    assert tokens.ents[0].end == 4
 | 
						|
 | 
						|
 | 
						|
def test_doc_api_sents_empty_string(en_tokenizer):
 | 
						|
    doc = en_tokenizer("")
 | 
						|
    sents = list(doc.sents)
 | 
						|
    assert len(sents) == 0
 | 
						|
 | 
						|
 | 
						|
def test_doc_api_runtime_error(en_tokenizer):
 | 
						|
    # Example that caused run-time error while parsing Reddit
 | 
						|
    # fmt: off
 | 
						|
    text = "67% of black households are single parent \n\n72% of all black babies born out of wedlock \n\n50% of all black kids don\u2019t finish high school"
 | 
						|
    deps = ["nummod", "nsubj", "prep", "amod", "pobj", "ROOT", "amod", "attr", "", "nummod", "appos", "prep", "det",
 | 
						|
            "amod", "pobj", "acl", "prep", "prep", "pobj",
 | 
						|
            "", "nummod", "nsubj", "prep", "det", "amod", "pobj", "aux", "neg", "ccomp", "amod", "dobj"]
 | 
						|
    # fmt: on
 | 
						|
    tokens = en_tokenizer(text)
 | 
						|
    doc = get_doc(tokens.vocab, words=[t.text for t in tokens], deps=deps)
 | 
						|
    nps = []
 | 
						|
    for np in doc.noun_chunks:
 | 
						|
        while len(np) > 1 and np[0].dep_ not in ("advmod", "amod", "compound"):
 | 
						|
            np = np[1:]
 | 
						|
        if len(np) > 1:
 | 
						|
            nps.append(np)
 | 
						|
    with doc.retokenize() as retokenizer:
 | 
						|
        for np in nps:
 | 
						|
            attrs = {
 | 
						|
                "tag": np.root.tag_,
 | 
						|
                "lemma": np.text,
 | 
						|
                "ent_type": np.root.ent_type_,
 | 
						|
            }
 | 
						|
            retokenizer.merge(np, attrs=attrs)
 | 
						|
 | 
						|
 | 
						|
def test_doc_api_right_edge(en_tokenizer):
 | 
						|
    """Test for bug occurring from Unshift action, causing incorrect right edge"""
 | 
						|
    # fmt: off
 | 
						|
    text = "I have proposed to myself, for the sake of such as live under the government of the Romans, to translate those books into the Greek tongue."
 | 
						|
    heads = [2, 1, 0, -1, -1, -3, 15, 1, -2, -1, 1, -3, -1, -1, 1, -2, -1, 1,
 | 
						|
             -2, -7, 1, -19, 1, -2, -3, 2, 1, -3, -26]
 | 
						|
    deps = ["dep"] * len(heads)
 | 
						|
    # fmt: on
 | 
						|
 | 
						|
    tokens = en_tokenizer(text)
 | 
						|
    doc = get_doc(tokens.vocab, words=[t.text for t in tokens], heads=heads, deps=deps)
 | 
						|
    assert doc[6].text == "for"
 | 
						|
    subtree = [w.text for w in doc[6].subtree]
 | 
						|
    # fmt: off
 | 
						|
    assert subtree == ["for", "the", "sake", "of", "such", "as", "live", "under", "the", "government", "of", "the", "Romans", ","]
 | 
						|
    # fmt: on
 | 
						|
    assert doc[6].right_edge.text == ","
 | 
						|
 | 
						|
 | 
						|
def test_doc_api_has_vector():
 | 
						|
    vocab = Vocab()
 | 
						|
    vocab.reset_vectors(width=2)
 | 
						|
    vocab.set_vector("kitten", vector=numpy.asarray([0.0, 2.0], dtype="f"))
 | 
						|
    doc = Doc(vocab, words=["kitten"])
 | 
						|
    assert doc.has_vector
 | 
						|
 | 
						|
 | 
						|
def test_doc_api_similarity_match():
 | 
						|
    doc = Doc(Vocab(), words=["a"])
 | 
						|
    assert doc.similarity(doc[0]) == 1.0
 | 
						|
    assert doc.similarity(doc.vocab["a"]) == 1.0
 | 
						|
    doc2 = Doc(doc.vocab, words=["a", "b", "c"])
 | 
						|
    with pytest.warns(UserWarning):
 | 
						|
        assert doc.similarity(doc2[:1]) == 1.0
 | 
						|
        assert doc.similarity(doc2) == 0.0
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.parametrize(
 | 
						|
    "sentence,heads,lca_matrix",
 | 
						|
    [
 | 
						|
        (
 | 
						|
            "the lazy dog slept",
 | 
						|
            [2, 1, 1, 0],
 | 
						|
            numpy.array([[0, 2, 2, 3], [2, 1, 2, 3], [2, 2, 2, 3], [3, 3, 3, 3]]),
 | 
						|
        ),
 | 
						|
        (
 | 
						|
            "The lazy dog slept. The quick fox jumped",
 | 
						|
            [2, 1, 1, 0, -1, 2, 1, 1, 0],
 | 
						|
            numpy.array(
 | 
						|
                [
 | 
						|
                    [0, 2, 2, 3, 3, -1, -1, -1, -1],
 | 
						|
                    [2, 1, 2, 3, 3, -1, -1, -1, -1],
 | 
						|
                    [2, 2, 2, 3, 3, -1, -1, -1, -1],
 | 
						|
                    [3, 3, 3, 3, 3, -1, -1, -1, -1],
 | 
						|
                    [3, 3, 3, 3, 4, -1, -1, -1, -1],
 | 
						|
                    [-1, -1, -1, -1, -1, 5, 7, 7, 8],
 | 
						|
                    [-1, -1, -1, -1, -1, 7, 6, 7, 8],
 | 
						|
                    [-1, -1, -1, -1, -1, 7, 7, 7, 8],
 | 
						|
                    [-1, -1, -1, -1, -1, 8, 8, 8, 8],
 | 
						|
                ]
 | 
						|
            ),
 | 
						|
        ),
 | 
						|
    ],
 | 
						|
)
 | 
						|
def test_lowest_common_ancestor(en_tokenizer, sentence, heads, lca_matrix):
 | 
						|
    tokens = en_tokenizer(sentence)
 | 
						|
    doc = get_doc(
 | 
						|
        tokens.vocab, [t.text for t in tokens], heads=heads, deps=["dep"] * len(heads)
 | 
						|
    )
 | 
						|
    lca = doc.get_lca_matrix()
 | 
						|
    assert (lca == lca_matrix).all()
 | 
						|
    assert lca[1, 1] == 1
 | 
						|
    assert lca[0, 1] == 2
 | 
						|
    assert lca[1, 2] == 2
 | 
						|
 | 
						|
 | 
						|
def test_doc_is_nered(en_vocab):
 | 
						|
    words = ["I", "live", "in", "New", "York"]
 | 
						|
    doc = Doc(en_vocab, words=words)
 | 
						|
    assert not doc.has_annotation("ENT_IOB")
 | 
						|
    doc.ents = [Span(doc, 3, 5, label="GPE")]
 | 
						|
    assert doc.has_annotation("ENT_IOB")
 | 
						|
    # Test creating doc from array with unknown values
 | 
						|
    arr = numpy.array([[0, 0], [0, 0], [0, 0], [384, 3], [384, 1]], dtype="uint64")
 | 
						|
    doc = Doc(en_vocab, words=words).from_array([ENT_TYPE, ENT_IOB], arr)
 | 
						|
    assert doc.has_annotation("ENT_IOB")
 | 
						|
    # Test serialization
 | 
						|
    new_doc = Doc(en_vocab).from_bytes(doc.to_bytes())
 | 
						|
    assert new_doc.has_annotation("ENT_IOB")
 | 
						|
 | 
						|
 | 
						|
def test_doc_from_array_sent_starts(en_vocab):
 | 
						|
    words = ["I", "live", "in", "New", "York", ".", "I", "like", "cats", "."]
 | 
						|
    heads = [0, -1, -2, -3, -4, -5, 0, -1, -2, -3]
 | 
						|
    # fmt: off
 | 
						|
    deps = ["ROOT", "dep", "dep", "dep", "dep", "dep", "ROOT", "dep", "dep", "dep"]
 | 
						|
    # fmt: on
 | 
						|
    doc = get_doc(en_vocab, words=words, heads=heads, deps=deps)
 | 
						|
 | 
						|
    # HEAD overrides SENT_START with warning
 | 
						|
    attrs = [SENT_START, HEAD]
 | 
						|
    arr = doc.to_array(attrs)
 | 
						|
    new_doc = Doc(en_vocab, words=words)
 | 
						|
    with pytest.warns(UserWarning):
 | 
						|
        new_doc.from_array(attrs, arr)
 | 
						|
 | 
						|
    # no warning using default attrs
 | 
						|
    attrs = doc._get_array_attrs()
 | 
						|
    arr = doc.to_array(attrs)
 | 
						|
    with pytest.warns(None) as record:
 | 
						|
        new_doc.from_array(attrs, arr)
 | 
						|
        assert len(record) == 0
 | 
						|
 | 
						|
    # only SENT_START uses SENT_START
 | 
						|
    attrs = [SENT_START]
 | 
						|
    arr = doc.to_array(attrs)
 | 
						|
    new_doc = Doc(en_vocab, words=words)
 | 
						|
    new_doc.from_array(attrs, arr)
 | 
						|
    assert [t.is_sent_start for t in doc] == [t.is_sent_start for t in new_doc]
 | 
						|
    assert not new_doc.has_annotation("DEP")
 | 
						|
 | 
						|
    # only HEAD uses HEAD
 | 
						|
    attrs = [HEAD, DEP]
 | 
						|
    arr = doc.to_array(attrs)
 | 
						|
    new_doc = Doc(en_vocab, words=words)
 | 
						|
    new_doc.from_array(attrs, arr)
 | 
						|
    assert [t.is_sent_start for t in doc] == [t.is_sent_start for t in new_doc]
 | 
						|
    assert new_doc.has_annotation("DEP")
 | 
						|
 | 
						|
 | 
						|
def test_doc_from_array_morph(en_vocab):
 | 
						|
    words = ["I", "live", "in", "New", "York", "."]
 | 
						|
    # fmt: off
 | 
						|
    morphs = ["Feat1=A", "Feat1=B", "Feat1=C", "Feat1=A|Feat2=D", "Feat2=E", "Feat3=F"]
 | 
						|
    # fmt: on
 | 
						|
    doc = Doc(en_vocab, words=words)
 | 
						|
    for i, morph in enumerate(morphs):
 | 
						|
        doc[i].morph_ = morph
 | 
						|
 | 
						|
    attrs = [MORPH]
 | 
						|
    arr = doc.to_array(attrs)
 | 
						|
    new_doc = Doc(en_vocab, words=words)
 | 
						|
    new_doc.from_array(attrs, arr)
 | 
						|
 | 
						|
    assert [t.morph_ for t in new_doc] == morphs
 | 
						|
    assert [t.morph_ for t in doc] == [t.morph_ for t in new_doc]
 | 
						|
 | 
						|
 | 
						|
def test_doc_api_from_docs(en_tokenizer, de_tokenizer):
 | 
						|
    en_texts = ["Merging the docs is fun.", "", "They don't think alike."]
 | 
						|
    en_texts_without_empty = [t for t in en_texts if len(t)]
 | 
						|
    de_text = "Wie war die Frage?"
 | 
						|
    en_docs = [en_tokenizer(text) for text in en_texts]
 | 
						|
    docs_idx = en_texts[0].index("docs")
 | 
						|
    de_doc = de_tokenizer(de_text)
 | 
						|
    en_docs[0].user_data[("._.", "is_ambiguous", docs_idx, None)] = (
 | 
						|
        True,
 | 
						|
        None,
 | 
						|
        None,
 | 
						|
        None,
 | 
						|
    )
 | 
						|
 | 
						|
    assert Doc.from_docs([]) is None
 | 
						|
 | 
						|
    assert de_doc is not Doc.from_docs([de_doc])
 | 
						|
    assert str(de_doc) == str(Doc.from_docs([de_doc]))
 | 
						|
 | 
						|
    with pytest.raises(ValueError):
 | 
						|
        Doc.from_docs(en_docs + [de_doc])
 | 
						|
 | 
						|
    m_doc = Doc.from_docs(en_docs)
 | 
						|
    assert len(en_texts_without_empty) == len(list(m_doc.sents))
 | 
						|
    assert len(str(m_doc)) > len(en_texts[0]) + len(en_texts[1])
 | 
						|
    assert str(m_doc) == " ".join(en_texts_without_empty)
 | 
						|
    p_token = m_doc[len(en_docs[0]) - 1]
 | 
						|
    assert p_token.text == "." and bool(p_token.whitespace_)
 | 
						|
    en_docs_tokens = [t for doc in en_docs for t in doc]
 | 
						|
    assert len(m_doc) == len(en_docs_tokens)
 | 
						|
    think_idx = len(en_texts[0]) + 1 + en_texts[2].index("think")
 | 
						|
    assert m_doc[9].idx == think_idx
 | 
						|
    with pytest.raises(AttributeError):
 | 
						|
        # not callable, because it was not set via set_extension
 | 
						|
        m_doc[2]._.is_ambiguous
 | 
						|
    assert len(m_doc.user_data) == len(en_docs[0].user_data)  # but it's there
 | 
						|
 | 
						|
    m_doc = Doc.from_docs(en_docs, ensure_whitespace=False)
 | 
						|
    assert len(en_texts_without_empty) == len(list(m_doc.sents))
 | 
						|
    assert len(str(m_doc)) == sum(len(t) for t in en_texts)
 | 
						|
    assert str(m_doc) == "".join(en_texts)
 | 
						|
    p_token = m_doc[len(en_docs[0]) - 1]
 | 
						|
    assert p_token.text == "." and not bool(p_token.whitespace_)
 | 
						|
    en_docs_tokens = [t for doc in en_docs for t in doc]
 | 
						|
    assert len(m_doc) == len(en_docs_tokens)
 | 
						|
    think_idx = len(en_texts[0]) + 0 + en_texts[2].index("think")
 | 
						|
    assert m_doc[9].idx == think_idx
 | 
						|
 | 
						|
    m_doc = Doc.from_docs(en_docs, attrs=["lemma", "length", "pos"])
 | 
						|
    assert len(str(m_doc)) > len(en_texts[0]) + len(en_texts[1])
 | 
						|
    # space delimiter considered, although spacy attribute was missing
 | 
						|
    assert str(m_doc) == " ".join(en_texts_without_empty)
 | 
						|
    p_token = m_doc[len(en_docs[0]) - 1]
 | 
						|
    assert p_token.text == "." and bool(p_token.whitespace_)
 | 
						|
    en_docs_tokens = [t for doc in en_docs for t in doc]
 | 
						|
    assert len(m_doc) == len(en_docs_tokens)
 | 
						|
    think_idx = len(en_texts[0]) + 1 + en_texts[2].index("think")
 | 
						|
    assert m_doc[9].idx == think_idx
 | 
						|
 | 
						|
 | 
						|
def test_doc_api_from_docs_ents(en_tokenizer):
 | 
						|
    texts = ["Merging the docs is fun.", "They don't think alike."]
 | 
						|
    docs = [en_tokenizer(t) for t in texts]
 | 
						|
    docs[0].ents = ()
 | 
						|
    docs[1].ents = (Span(docs[1], 0, 1, label="foo"),)
 | 
						|
    doc = Doc.from_docs(docs)
 | 
						|
    assert len(doc.ents) == 1
 | 
						|
 | 
						|
 | 
						|
def test_doc_lang(en_vocab):
 | 
						|
    doc = Doc(en_vocab, words=["Hello", "world"])
 | 
						|
    assert doc.lang_ == "en"
 | 
						|
    assert doc.lang == en_vocab.strings["en"]
 | 
						|
    assert doc[0].lang_ == "en"
 | 
						|
    assert doc[0].lang == en_vocab.strings["en"]
 | 
						|
    nlp = English()
 | 
						|
    doc = nlp("Hello world")
 | 
						|
    assert doc.lang_ == "en"
 | 
						|
    assert doc.lang == en_vocab.strings["en"]
 | 
						|
    assert doc[0].lang_ == "en"
 | 
						|
    assert doc[0].lang == en_vocab.strings["en"]
 | 
						|
 | 
						|
 | 
						|
def test_token_lexeme(en_vocab):
 | 
						|
    """Test that tokens expose their lexeme."""
 | 
						|
    token = Doc(en_vocab, words=["Hello", "world"])[0]
 | 
						|
    assert isinstance(token.lex, Lexeme)
 | 
						|
    assert token.lex.text == token.text
 | 
						|
    assert en_vocab[token.orth] == token.lex
 | 
						|
 | 
						|
 | 
						|
def test_has_annotation(en_vocab):
 | 
						|
    doc = Doc(en_vocab, words=["Hello", "world"])
 | 
						|
    attrs = ("TAG", "POS", "MORPH", "LEMMA", "DEP", "HEAD", "ENT_IOB", "ENT_TYPE")
 | 
						|
    for attr in attrs:
 | 
						|
        assert not doc.has_annotation(attr)
 | 
						|
 | 
						|
    doc[0].tag_ = "A"
 | 
						|
    doc[0].pos_ = "X"
 | 
						|
    doc[0].morph_ = "Feat=Val"
 | 
						|
    doc[0].lemma_ = "a"
 | 
						|
    doc[0].dep_ = "dep"
 | 
						|
    doc[0].head = doc[1]
 | 
						|
    doc.ents = [Span(doc, 0, 1, label="HELLO")]
 | 
						|
 | 
						|
    for attr in attrs:
 | 
						|
        assert doc.has_annotation(attr)
 | 
						|
        assert not doc.has_annotation(attr, require_complete=True)
 | 
						|
 | 
						|
    doc[1].tag_ = "A"
 | 
						|
    doc[1].pos_ = "X"
 | 
						|
    doc[1].morph_ = ""
 | 
						|
    doc[1].lemma_ = "a"
 | 
						|
    doc[1].dep_ = "dep"
 | 
						|
    doc.ents = [Span(doc, 0, 2, label="HELLO")]
 | 
						|
 | 
						|
    for attr in attrs:
 | 
						|
        assert doc.has_annotation(attr)
 | 
						|
        assert doc.has_annotation(attr, require_complete=True)
 | 
						|
 | 
						|
 | 
						|
def test_is_flags_deprecated(en_tokenizer):
 | 
						|
    doc = en_tokenizer("test")
 | 
						|
    with pytest.deprecated_call():
 | 
						|
        doc.is_tagged
 | 
						|
    with pytest.deprecated_call():
 | 
						|
        doc.is_parsed
 | 
						|
    with pytest.deprecated_call():
 | 
						|
        doc.is_nered
 | 
						|
    with pytest.deprecated_call():
 | 
						|
        doc.is_sentenced
 |