spaCy/spacy/tests/test_misc.py
Ines Montani 37c7c85a86 💫 New JSON helpers, training data internals & CLI rewrite (#2932)
* Support nowrap setting in util.prints

* Tidy up and fix whitespace

* Simplify script and use read_jsonl helper

* Add JSON schemas (see #2928)

* Deprecate Doc.print_tree

Will be replaced with Doc.to_json, which will produce a unified format

* Add Doc.to_json() method (see #2928)

Converts Doc objects to JSON using the same unified format as the training data. Method also supports serializing selected custom attributes in the doc._. space.

* Remove outdated test

* Add write_json and write_jsonl helpers

* WIP: Update spacy train

* Tidy up spacy train

* WIP: Use wasabi for formatting

* Add GoldParse helpers for JSON format

* WIP: add debug-data command

* Fix typo

* Add missing import

* Update wasabi pin

* Add missing import

* 💫 Refactor CLI (#2943)

To be merged into #2932.

## Description
- [x] refactor CLI To use [`wasabi`](https://github.com/ines/wasabi)
- [x] use [`black`](https://github.com/ambv/black) for auto-formatting
- [x] add `flake8` config
- [x] move all messy UD-related scripts to `cli.ud`
- [x] make converters function that take the opened file and return the converted data (instead of having them handle the IO)

### Types of change
enhancement

## Checklist
<!--- Before you submit the PR, go over this checklist and make sure you can
tick off all the boxes. [] -> [x] -->
- [x] I have submitted the spaCy Contributor Agreement.
- [x] I ran the tests, and all new and existing tests passed.
- [x] My changes don't require a change to the documentation, or if they do, I've added all required information.

* Update wasabi pin

* Delete old test

* Update errors

* Fix typo

* Tidy up and format remaining code

* Fix formatting

* Improve formatting of messages

* Auto-format remaining code

* Add tok2vec stuff to spacy.train

* Fix typo

* Update wasabi pin

* Fix path checks for when train() is called as function

* Reformat and tidy up pretrain script

* Update argument annotations

* Raise error if model language doesn't match lang

* Document new train command
2018-11-30 20:16:14 +01:00

113 lines
3.6 KiB
Python

# coding: utf-8
from __future__ import unicode_literals
import pytest
from pathlib import Path
from spacy import util
from spacy import displacy
from spacy import prefer_gpu, require_gpu
from spacy.tokens import Span
from spacy._ml import PrecomputableAffine
from .util import get_doc
@pytest.mark.parametrize("text", ["hello/world", "hello world"])
def test_util_ensure_path_succeeds(text):
path = util.ensure_path(text)
assert isinstance(path, Path)
@pytest.mark.parametrize("package", ["numpy"])
def test_util_is_package(package):
"""Test that an installed package via pip is recognised by util.is_package."""
assert util.is_package(package)
@pytest.mark.parametrize("package", ["thinc"])
def test_util_get_package_path(package):
"""Test that a Path object is returned for a package name."""
path = util.get_package_path(package)
assert isinstance(path, Path)
def test_displacy_parse_ents(en_vocab):
"""Test that named entities on a Doc are converted into displaCy's format."""
doc = get_doc(en_vocab, words=["But", "Google", "is", "starting", "from", "behind"])
doc.ents = [Span(doc, 1, 2, label=doc.vocab.strings["ORG"])]
ents = displacy.parse_ents(doc)
assert isinstance(ents, dict)
assert ents["text"] == "But Google is starting from behind "
assert ents["ents"] == [{"start": 4, "end": 10, "label": "ORG"}]
def test_displacy_parse_deps(en_vocab):
"""Test that deps and tags on a Doc are converted into displaCy's format."""
words = ["This", "is", "a", "sentence"]
heads = [1, 0, 1, -2]
pos = ["DET", "VERB", "DET", "NOUN"]
tags = ["DT", "VBZ", "DT", "NN"]
deps = ["nsubj", "ROOT", "det", "attr"]
doc = get_doc(en_vocab, words=words, heads=heads, pos=pos, tags=tags, deps=deps)
deps = displacy.parse_deps(doc)
assert isinstance(deps, dict)
assert deps["words"] == [
{"text": "This", "tag": "DET"},
{"text": "is", "tag": "VERB"},
{"text": "a", "tag": "DET"},
{"text": "sentence", "tag": "NOUN"},
]
assert deps["arcs"] == [
{"start": 0, "end": 1, "label": "nsubj", "dir": "left"},
{"start": 2, "end": 3, "label": "det", "dir": "left"},
{"start": 1, "end": 3, "label": "attr", "dir": "right"},
]
def test_displacy_spans(en_vocab):
"""Test that displaCy can render Spans."""
doc = get_doc(en_vocab, words=["But", "Google", "is", "starting", "from", "behind"])
doc.ents = [Span(doc, 1, 2, label=doc.vocab.strings["ORG"])]
html = displacy.render(doc[1:4], style="ent")
assert html.startswith("<div")
def test_displacy_raises_for_wrong_type(en_vocab):
with pytest.raises(ValueError):
displacy.render("hello world")
def test_PrecomputableAffine(nO=4, nI=5, nF=3, nP=2):
model = PrecomputableAffine(nO=nO, nI=nI, nF=nF, nP=nP)
assert model.W.shape == (nF, nO, nP, nI)
tensor = model.ops.allocate((10, nI))
Y, get_dX = model.begin_update(tensor)
assert Y.shape == (tensor.shape[0] + 1, nF, nO, nP)
assert model.d_pad.shape == (1, nF, nO, nP)
dY = model.ops.allocate((15, nO, nP))
ids = model.ops.allocate((15, nF))
ids[1, 2] = -1
dY[1] = 1
assert model.d_pad[0, 2, 0, 0] == 0.0
model._backprop_padding(dY, ids)
assert model.d_pad[0, 2, 0, 0] == 1.0
model.d_pad.fill(0.0)
ids.fill(0.0)
dY.fill(0.0)
ids[1, 2] = -1
ids[1, 1] = -1
ids[1, 0] = -1
dY[1] = 1
assert model.d_pad[0, 2, 0, 0] == 0.0
model._backprop_padding(dY, ids)
assert model.d_pad[0, 2, 0, 0] == 3.0
def test_prefer_gpu():
assert not prefer_gpu()
def test_require_gpu():
with pytest.raises(ValueError):
require_gpu()