spaCy/spacy/tests/lang/en/test_noun_chunks.py
Vishnu Priya VR 9ce059dd06
Limiting noun_chunks for specific languages (#5396)
* Limiting noun_chunks for specific langauges

* Limiting noun_chunks for specific languages

Contributor Agreement

* Addressing review comments

* Removed unused fixtures and imports

* Add fa_tokenizer in test suite

* Use fa_tokenizer in test

* Undo extraneous reformatting

Co-authored-by: adrianeboyd <adrianeboyd@gmail.com>
2020-05-14 12:58:06 +02:00

55 lines
1.7 KiB
Python

# coding: utf-8
from __future__ import unicode_literals
import numpy
from spacy.attrs import HEAD, DEP
from spacy.symbols import nsubj, dobj, amod, nmod, conj, cc, root
from spacy.lang.en.syntax_iterators import SYNTAX_ITERATORS
import pytest
from ...util import get_doc
def test_noun_chunks_is_parsed(en_tokenizer):
"""Test that noun_chunks raises Value Error for 'en' language if Doc is not parsed.
To check this test, we're constructing a Doc
with a new Vocab here and forcing is_parsed to 'False'
to make sure the noun chunks don't run.
"""
doc = en_tokenizer("This is a sentence")
doc.is_parsed = False
with pytest.raises(ValueError):
list(doc.noun_chunks)
def test_en_noun_chunks_not_nested(en_vocab):
words = ["Peter", "has", "chronic", "command", "and", "control", "issues"]
heads = [1, 0, 4, 3, -1, -2, -5]
deps = ["nsubj", "ROOT", "amod", "nmod", "cc", "conj", "dobj"]
doc = get_doc(en_vocab, words=words, heads=heads, deps=deps)
doc.from_array(
[HEAD, DEP],
numpy.asarray(
[
[1, nsubj],
[0, root],
[4, amod],
[3, nmod],
[-1, cc],
[-2, conj],
[-5, dobj],
],
dtype="uint64",
),
)
doc.noun_chunks_iterator = SYNTAX_ITERATORS["noun_chunks"]
word_occurred = {}
for chunk in doc.noun_chunks:
for word in chunk:
word_occurred.setdefault(word.text, 0)
word_occurred[word.text] += 1
for word, freq in word_occurred.items():
assert freq == 1, (word, [chunk.text for chunk in doc.noun_chunks])