mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-26 17:24:41 +03:00
43b960c01b
* Update with WIP * Update with WIP * Update with pipeline serialization * Update types and pipe factories * Add deep merge, tidy up and add tests * Fix pipe creation from config * Don't validate default configs on load * Update spacy/language.py Co-authored-by: Ines Montani <ines@ines.io> * Adjust factory/component meta error * Clean up factory args and remove defaults * Add test for failing empty dict defaults * Update pipeline handling and methods * provide KB as registry function instead of as object * small change in test to make functionality more clear * update example script for EL configuration * Fix typo * Simplify test * Simplify test * splitting pipes.pyx into separate files * moving default configs to each component file * fix batch_size type * removing default values from component constructors where possible (TODO: test 4725) * skip instead of xfail * Add test for config -> nlp with multiple instances * pipeline.pipes -> pipeline.pipe * Tidy up, document, remove kwargs * small cleanup/generalization for Tok2VecListener * use DEFAULT_UPSTREAM field * revert to avoid circular imports * Fix tests * Replace deprecated arg * Make model dirs require config * fix pickling of keyword-only arguments in constructor * WIP: clean up and integrate full config * Add helper to handle function args more reliably Now also includes keyword-only args * Fix config composition and serialization * Improve config debugging and add visual diff * Remove unused defaults and fix type * Remove pipeline and factories from meta * Update spacy/default_config.cfg Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Update spacy/default_config.cfg * small UX edits * avoid printing stack trace for debug CLI commands * Add support for language-specific factories * specify the section of the config which holds the model to debug * WIP: add Language.from_config * Update with language data refactor WIP * Auto-format * Add backwards-compat handling for Language.factories * Update morphologizer.pyx * Fix morphologizer * Update and simplify lemmatizers * Fix Japanese tests * Port over tagger changes * Fix Chinese and tests * Update to latest Thinc * WIP: xfail first Russian lemmatizer test * Fix component-specific overrides * fix nO for output layers in debug_model * Fix default value * Fix tests and don't pass objects in config * Fix deep merging * Fix lemma lookup data registry Only load the lookups if an entry is available in the registry (and if spacy-lookups-data is installed) * Add types * Add Vocab.from_config * Fix typo * Fix tests * Make config copying more elegant * Fix pipe analysis * Fix lemmatizers and is_base_form * WIP: move language defaults to config * Fix morphology type * Fix vocab * Remove comment * Update to latest Thinc * Add morph rules to config * Tidy up * Remove set_morphology option from tagger factory * Hack use_gpu * Move [pipeline] to top-level block and make [nlp.pipeline] list Allows separating component blocks from component order – otherwise, ordering the config would mean a changed component order, which is bad. Also allows initial config to define more components and not use all of them * Fix use_gpu and resume in CLI * Auto-format * Remove resume from config * Fix formatting and error * [pipeline] -> [components] * Fix types * Fix tagger test: requires set_morphology? Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> Co-authored-by: svlandeg <sofie.vanlandeghem@gmail.com> Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com>
128 lines
4.5 KiB
Python
128 lines
4.5 KiB
Python
from typing import Optional, List, Dict, Tuple
|
|
|
|
from ...lemmatizer import Lemmatizer
|
|
from ...symbols import NOUN, VERB, ADJ, NUM, DET, PRON, ADP, AUX, ADV
|
|
|
|
|
|
class DutchLemmatizer(Lemmatizer):
|
|
# Note: CGN does not distinguish AUX verbs, so we treat AUX as VERB.
|
|
univ_pos_name_variants = {
|
|
NOUN: "noun",
|
|
"NOUN": "noun",
|
|
"noun": "noun",
|
|
VERB: "verb",
|
|
"VERB": "verb",
|
|
"verb": "verb",
|
|
AUX: "verb",
|
|
"AUX": "verb",
|
|
"aux": "verb",
|
|
ADJ: "adj",
|
|
"ADJ": "adj",
|
|
"adj": "adj",
|
|
ADV: "adv",
|
|
"ADV": "adv",
|
|
"adv": "adv",
|
|
PRON: "pron",
|
|
"PRON": "pron",
|
|
"pron": "pron",
|
|
DET: "det",
|
|
"DET": "det",
|
|
"det": "det",
|
|
ADP: "adp",
|
|
"ADP": "adp",
|
|
"adp": "adp",
|
|
NUM: "num",
|
|
"NUM": "num",
|
|
"num": "num",
|
|
}
|
|
|
|
def __call__(
|
|
self, string: str, univ_pos: str, morphology: Optional[dict] = None
|
|
) -> List[str]:
|
|
# Difference 1: self.rules is assumed to be non-None, so no
|
|
# 'is None' check required.
|
|
# String lowercased from the get-go. All lemmatization results in
|
|
# lowercased strings. For most applications, this shouldn't pose
|
|
# any problems, and it keeps the exceptions indexes small. If this
|
|
# creates problems for proper nouns, we can introduce a check for
|
|
# univ_pos == "PROPN".
|
|
string = string.lower()
|
|
try:
|
|
univ_pos = self.univ_pos_name_variants[univ_pos]
|
|
except KeyError:
|
|
# Because PROPN not in self.univ_pos_name_variants, proper names
|
|
# are not lemmatized. They are lowercased, however.
|
|
return [string]
|
|
# if string in self.lemma_index.get(univ_pos)
|
|
index_table = self.lookups.get_table("lemma_index", {})
|
|
lemma_index = index_table.get(univ_pos, {})
|
|
# string is already lemma
|
|
if string in lemma_index:
|
|
return [string]
|
|
exc_table = self.lookups.get_table("lemma_exc", {})
|
|
exceptions = exc_table.get(univ_pos, {})
|
|
# string is irregular token contained in exceptions index.
|
|
try:
|
|
lemma = exceptions[string]
|
|
return [lemma[0]]
|
|
except KeyError:
|
|
pass
|
|
# string corresponds to key in lookup table
|
|
lookup_table = self.lookups.get_table("lemma_lookup", {})
|
|
looked_up_lemma = lookup_table.get(string)
|
|
if looked_up_lemma and looked_up_lemma in lemma_index:
|
|
return [looked_up_lemma]
|
|
rules_table = self.lookups.get_table("lemma_rules", {})
|
|
forms, is_known = self.lemmatize(
|
|
string, lemma_index, exceptions, rules_table.get(univ_pos, [])
|
|
)
|
|
# Back-off through remaining return value candidates.
|
|
if forms:
|
|
if is_known:
|
|
return forms
|
|
else:
|
|
for form in forms:
|
|
if form in exceptions:
|
|
return [form]
|
|
if looked_up_lemma:
|
|
return [looked_up_lemma]
|
|
else:
|
|
return forms
|
|
elif looked_up_lemma:
|
|
return [looked_up_lemma]
|
|
else:
|
|
return [string]
|
|
|
|
# Overrides parent method so that a lowercased version of the string is
|
|
# used to search the lookup table. This is necessary because our lookup
|
|
# table consists entirely of lowercase keys.
|
|
def lookup(self, string: str, orth: Optional[int] = None) -> str:
|
|
lookup_table = self.lookups.get_table("lemma_lookup", {})
|
|
string = string.lower()
|
|
if orth is not None:
|
|
return lookup_table.get(orth, string)
|
|
else:
|
|
return lookup_table.get(string, string)
|
|
|
|
# Reimplemented to focus more on application of suffix rules and to return
|
|
# as early as possible.
|
|
def lemmatize(
|
|
self,
|
|
string: str,
|
|
index: Dict[str, List[str]],
|
|
exceptions: Dict[str, Dict[str, List[str]]],
|
|
rules: Dict[str, List[List[str]]],
|
|
) -> Tuple[List[str], bool]:
|
|
# returns (forms, is_known: bool)
|
|
oov_forms = []
|
|
for old, new in rules:
|
|
if string.endswith(old):
|
|
form = string[: len(string) - len(old)] + new
|
|
if not form:
|
|
pass
|
|
elif form in index:
|
|
return [form], True # True = Is known (is lemma)
|
|
else:
|
|
oov_forms.append(form)
|
|
return list(set(oov_forms)), False
|