mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-26 09:14:32 +03:00
fa79a0db9f
* Add AttributeRuler for token attribute exceptions
Add the `AttributeRuler` to handle exceptions for token-level
attributes. The `AttributeRuler` uses `Matcher` patterns to identify
target spans and applies the specified attributes to the token at the
provided index in the matched span. A negative index can be used to
index from the end of the matched span. The retokenizer is used to
"merge" the individual tokens and assign them the provided attributes.
Helper functions can import existing tag maps and morph rules to the
corresponding `Matcher` patterns.
There is an additional minor bug fix for `MORPH` attributes in the
retokenizer to correctly normalize the values and to handle `MORPH`
alongside `_` in an attrs dict.
* Fix default name
* Update name in error message
* Extend AttributeRuler functionality
* Add option to initialize with a dict of AttributeRuler patterns
* Instead of silently discarding overlapping matches (the default
behavior for the retokenizer if only the attrs differ), split the
matches into disjoint sets and retokenize each set separately. This
allows, for instance, one pattern to set the POS and another pattern to
set the lemma. (If two matches modify the same attribute, it looks like
the attrs are applied in the order they were added, but it may not be
deterministic?)
* Improve types
* Sort spans before processing
* Fix index boundaries in Span
* Refactor retokenizer to separate attrs methods
Add top-level `normalize_token_attrs` and `set_token_attrs` methods.
* Update AttributeRuler to use refactored methods
Update `AttributeRuler` to replace use of full retokenizer with only the
relevant methods for normalizing and setting attributes for a single
token.
* Update spacy/pipeline/attributeruler.py
Co-authored-by: Ines Montani <ines@ines.io>
* Make API more similar to EntityRuler
* Add `AttributeRuler.add_patterns` to add patterns from a list of dicts
* Return list of dicts as property `AttributeRuler.patterns`
* Make attrs_unnormed private
* Add test loading patterns from assets
* Revert "Fix index boundaries in Span"
This reverts commit 8f8a5c3386
.
* Add Span index boundary checks (#5861)
* Add Span index boundary checks
* Return Span-specific IndexError in all cases
* Simplify and fix if/else
Co-authored-by: Ines Montani <ines@ines.io>
443 lines
19 KiB
Cython
443 lines
19 KiB
Cython
# cython: infer_types=True, bounds_check=False, profile=True
|
|
from libc.string cimport memcpy, memset
|
|
from libc.stdlib cimport malloc, free
|
|
from cymem.cymem cimport Pool
|
|
|
|
from thinc.api import get_array_module
|
|
import numpy
|
|
|
|
from .doc cimport Doc, set_children_from_heads, token_by_start, token_by_end
|
|
from .span cimport Span
|
|
from .token cimport Token
|
|
from ..lexeme cimport Lexeme, EMPTY_LEXEME
|
|
from ..structs cimport LexemeC, TokenC
|
|
from ..attrs cimport TAG, MORPH
|
|
from ..vocab cimport Vocab
|
|
|
|
from .underscore import is_writable_attr
|
|
from ..attrs import intify_attrs
|
|
from ..util import SimpleFrozenDict
|
|
from ..errors import Errors
|
|
from ..strings import get_string_id
|
|
|
|
|
|
cdef class Retokenizer:
|
|
"""Helper class for doc.retokenize() context manager.
|
|
|
|
DOCS: https://spacy.io/api/doc#retokenize
|
|
USAGE: https://spacy.io/usage/linguistic-features#retokenization
|
|
"""
|
|
cdef Doc doc
|
|
cdef list merges
|
|
cdef list splits
|
|
cdef set tokens_to_merge
|
|
cdef list _spans_to_merge
|
|
|
|
def __init__(self, doc):
|
|
self.doc = doc
|
|
self.merges = []
|
|
self.splits = []
|
|
self.tokens_to_merge = set()
|
|
self._spans_to_merge = [] # keep a record to filter out duplicates
|
|
|
|
def merge(self, Span span, attrs=SimpleFrozenDict()):
|
|
"""Mark a span for merging. The attrs will be applied to the resulting
|
|
token.
|
|
|
|
span (Span): The span to merge.
|
|
attrs (dict): Attributes to set on the merged token.
|
|
|
|
DOCS: https://spacy.io/api/doc#retokenizer.merge
|
|
"""
|
|
if (span.start, span.end) in self._spans_to_merge:
|
|
return
|
|
if span.end - span.start <= 0:
|
|
raise ValueError(Errors.E199.format(start=span.start, end=span.end))
|
|
for token in span:
|
|
if token.i in self.tokens_to_merge:
|
|
raise ValueError(Errors.E102.format(token=repr(token)))
|
|
self.tokens_to_merge.add(token.i)
|
|
self._spans_to_merge.append((span.start, span.end))
|
|
attrs = normalize_token_attrs(self.doc.vocab, attrs)
|
|
self.merges.append((span, attrs))
|
|
|
|
def split(self, Token token, orths, heads, attrs=SimpleFrozenDict()):
|
|
"""Mark a Token for splitting, into the specified orths. The attrs
|
|
will be applied to each subtoken.
|
|
|
|
token (Token): The token to split.
|
|
orths (list): The verbatim text of the split tokens. Needs to match the
|
|
text of the original token.
|
|
heads (list): List of token or `(token, subtoken)` tuples specifying the
|
|
tokens to attach the newly split subtokens to.
|
|
attrs (dict): Attributes to set on all split tokens. Attribute names
|
|
mapped to list of per-token attribute values.
|
|
|
|
DOCS: https://spacy.io/api/doc#retokenizer.split
|
|
"""
|
|
if ''.join(orths) != token.text:
|
|
raise ValueError(Errors.E117.format(new=''.join(orths), old=token.text))
|
|
if "_" in attrs: # Extension attributes
|
|
extensions = attrs["_"]
|
|
for extension in extensions:
|
|
_validate_extensions(extension)
|
|
attrs = {key: value for key, value in attrs.items() if key != "_"}
|
|
# NB: Since we support {"KEY": [value, value]} syntax here, this
|
|
# will only "intify" the keys, not the values
|
|
attrs = intify_attrs(attrs, strings_map=self.doc.vocab.strings)
|
|
attrs["_"] = extensions
|
|
else:
|
|
# NB: Since we support {"KEY": [value, value]} syntax here, this
|
|
# will only "intify" the keys, not the values
|
|
attrs = intify_attrs(attrs, strings_map=self.doc.vocab.strings)
|
|
if MORPH in attrs:
|
|
for i, morph in enumerate(attrs[MORPH]):
|
|
# add and set to normalized value
|
|
morph = self.doc.vocab.morphology.add(self.doc.vocab.strings.as_string(morph))
|
|
attrs[MORPH][i] = morph
|
|
head_offsets = []
|
|
for head in heads:
|
|
if isinstance(head, Token):
|
|
head_offsets.append((head.idx, 0))
|
|
else:
|
|
head_offsets.append((head[0].idx, head[1]))
|
|
self.splits.append((token.idx, orths, head_offsets, attrs))
|
|
|
|
def __enter__(self):
|
|
self.merges = []
|
|
self.splits = []
|
|
return self
|
|
|
|
def __exit__(self, *args):
|
|
# Do the actual merging here
|
|
if len(self.merges) >= 1:
|
|
_merge(self.doc, self.merges)
|
|
# Iterate in order, to keep things simple.
|
|
for start_char, orths, heads, attrs in sorted(self.splits):
|
|
# Resolve token index
|
|
token_index = token_by_start(self.doc.c, self.doc.length, start_char)
|
|
# Check we're still able to find tokens starting at the character offsets
|
|
# referred to in the splits. If we merged these tokens previously, we
|
|
# have to raise an error
|
|
if token_index == -1:
|
|
raise IndexError(Errors.E122)
|
|
head_indices = []
|
|
for head_char, subtoken in heads:
|
|
head_index = token_by_start(self.doc.c, self.doc.length, head_char)
|
|
if head_index == -1:
|
|
raise IndexError(Errors.E123)
|
|
# We want to refer to the token index of the head *after* the
|
|
# mergery. We need to account for the extra tokens introduced.
|
|
# e.g., let's say we have [ab, c] and we want a and b to depend
|
|
# on c. The correct index for c will be 2, not 1.
|
|
if head_index > token_index:
|
|
head_index += len(orths)-1
|
|
head_indices.append(head_index+subtoken)
|
|
_split(self.doc, token_index, orths, head_indices, attrs)
|
|
|
|
|
|
def _merge(Doc doc, merges):
|
|
"""Retokenize the document, such that the spans described in 'merges'
|
|
are merged into a single token. This method assumes that the merges
|
|
are in the same order at which they appear in the doc, and that merges
|
|
do not intersect each other in any way.
|
|
|
|
merges: Tokens to merge, and corresponding attributes to assign to the
|
|
merged token. By default, attributes are inherited from the
|
|
syntactic root of the span.
|
|
RETURNS (Token): The first newly merged token.
|
|
"""
|
|
cdef int i, merge_index, start, end, token_index, current_span_index, current_offset, offset, span_index
|
|
cdef Span span
|
|
cdef const LexemeC* lex
|
|
cdef TokenC* token
|
|
cdef Pool mem = Pool()
|
|
cdef int merged_iob = 0
|
|
|
|
# merges should not be empty, but make sure to avoid zero-length mem alloc
|
|
assert len(merges) > 0
|
|
tokens = <TokenC**>mem.alloc(len(merges), sizeof(TokenC))
|
|
spans = []
|
|
|
|
def _get_start(merge):
|
|
return merge[0].start
|
|
|
|
merges.sort(key=_get_start)
|
|
for merge_index, (span, attributes) in enumerate(merges):
|
|
start = span.start
|
|
end = span.end
|
|
spans.append(span)
|
|
# House the new merged token where it starts
|
|
token = &doc.c[start]
|
|
# Initially set attributes to attributes of span root
|
|
token.tag = doc.c[span.root.i].tag
|
|
token.pos = doc.c[span.root.i].pos
|
|
token.morph = doc.c[span.root.i].morph
|
|
token.ent_iob = doc.c[span.root.i].ent_iob
|
|
token.ent_type = doc.c[span.root.i].ent_type
|
|
merged_iob = token.ent_iob
|
|
# If span root is part of an entity, merged token is B-ENT
|
|
if token.ent_iob in (1, 3):
|
|
merged_iob = 3
|
|
# If start token is I-ENT and previous token is of the same
|
|
# type, then I-ENT (could check I-ENT from start to span root)
|
|
if doc.c[start].ent_iob == 1 and start > 0 \
|
|
and doc.c[start].ent_type == token.ent_type \
|
|
and doc.c[start - 1].ent_type == token.ent_type:
|
|
merged_iob = 1
|
|
token.ent_iob = merged_iob
|
|
# Unset attributes that don't match new token
|
|
token.lemma = 0
|
|
token.norm = 0
|
|
tokens[merge_index] = token
|
|
# Resize the doc.tensor, if it's set. Let the last row for each token stand
|
|
# for the merged region. To do this, we create a boolean array indicating
|
|
# whether the row is to be deleted, then use numpy.delete
|
|
if doc.tensor is not None and doc.tensor.size != 0:
|
|
doc.tensor = _resize_tensor(doc.tensor,
|
|
[(m[0].start, m[0].end) for m in merges])
|
|
# Memorize span roots and sets dependencies of the newly merged
|
|
# tokens to the dependencies of their roots.
|
|
span_roots = []
|
|
for i, span in enumerate(spans):
|
|
span_roots.append(span.root.i)
|
|
tokens[i].dep = span.root.dep
|
|
# We update token.lex after keeping span root and dep, since
|
|
# setting token.lex will change span.start and span.end properties
|
|
# as it modifies the character offsets in the doc
|
|
for token_index, (span, attributes) in enumerate(merges):
|
|
new_orth = ''.join([t.text_with_ws for t in spans[token_index]])
|
|
if spans[token_index][-1].whitespace_:
|
|
new_orth = new_orth[:-len(spans[token_index][-1].whitespace_)]
|
|
# add the vector of the (merged) entity to the vocab
|
|
if not doc.vocab.get_vector(new_orth).any():
|
|
if doc.vocab.vectors_length > 0:
|
|
doc.vocab.set_vector(new_orth, span.vector)
|
|
token = tokens[token_index]
|
|
lex = doc.vocab.get(doc.mem, new_orth)
|
|
token.lex = lex
|
|
# We set trailing space here too
|
|
token.spacy = doc.c[spans[token_index].end-1].spacy
|
|
set_token_attrs(span[0], attributes)
|
|
# Begin by setting all the head indices to absolute token positions
|
|
# This is easier to work with for now than the offsets
|
|
# Before thinking of something simpler, beware the case where a
|
|
# dependency bridges over the entity. Here the alignment of the
|
|
# tokens changes.
|
|
for i in range(doc.length):
|
|
doc.c[i].head += i
|
|
# Set the head of the merged token from the Span
|
|
for i in range(len(merges)):
|
|
tokens[i].head = doc.c[span_roots[i]].head
|
|
# Adjust deps before shrinking tokens
|
|
# Tokens which point into the merged token should now point to it
|
|
# Subtract the offset from all tokens which point to >= end
|
|
offsets = []
|
|
current_span_index = 0
|
|
current_offset = 0
|
|
for i in range(doc.length):
|
|
if current_span_index < len(spans) and i == spans[current_span_index].end:
|
|
# Last token was the last of the span
|
|
current_offset += (spans[current_span_index].end - spans[current_span_index].start) -1
|
|
current_span_index += 1
|
|
if current_span_index < len(spans) and \
|
|
spans[current_span_index].start <= i < spans[current_span_index].end:
|
|
offsets.append(spans[current_span_index].start - current_offset)
|
|
else:
|
|
offsets.append(i - current_offset)
|
|
for i in range(doc.length):
|
|
doc.c[i].head = offsets[doc.c[i].head]
|
|
# Now compress the token array
|
|
offset = 0
|
|
in_span = False
|
|
span_index = 0
|
|
for i in range(doc.length):
|
|
if in_span and i == spans[span_index].end:
|
|
# First token after a span
|
|
in_span = False
|
|
span_index += 1
|
|
if span_index < len(spans) and i == spans[span_index].start:
|
|
# First token in a span
|
|
doc.c[i - offset] = doc.c[i] # move token to its place
|
|
offset += (spans[span_index].end - spans[span_index].start) - 1
|
|
in_span = True
|
|
if not in_span:
|
|
doc.c[i - offset] = doc.c[i] # move token to its place
|
|
|
|
for i in range(doc.length - offset, doc.length):
|
|
memset(&doc.c[i], 0, sizeof(TokenC))
|
|
doc.c[i].lex = &EMPTY_LEXEME
|
|
doc.length -= offset
|
|
# ...And, set heads back to a relative position
|
|
for i in range(doc.length):
|
|
doc.c[i].head -= i
|
|
# Set the left/right children, left/right edges
|
|
set_children_from_heads(doc.c, doc.length)
|
|
# Make sure ent_iob remains consistent
|
|
make_iob_consistent(doc.c, doc.length)
|
|
# Return the merged Python object
|
|
return doc[spans[0].start]
|
|
|
|
|
|
def _resize_tensor(tensor, ranges):
|
|
delete = []
|
|
for start, end in ranges:
|
|
for i in range(start, end-1):
|
|
delete.append(i)
|
|
xp = get_array_module(tensor)
|
|
return xp.delete(tensor, delete, axis=0)
|
|
|
|
|
|
def _split(Doc doc, int token_index, orths, heads, attrs):
|
|
"""Retokenize the document, such that the token at
|
|
`doc[token_index]` is split into tokens with the orth 'orths'
|
|
token_index(int): token index of the token to split.
|
|
|
|
orths: IDs of the verbatim text content of the tokens to create
|
|
**attributes: Attributes to assign to each of the newly created tokens. By default,
|
|
attributes are inherited from the original token.
|
|
RETURNS (Token): The first newly created token.
|
|
"""
|
|
cdef int nb_subtokens = len(orths)
|
|
cdef const LexemeC* lex
|
|
cdef TokenC* token
|
|
cdef TokenC orig_token = doc.c[token_index]
|
|
cdef int orig_length = len(doc)
|
|
|
|
if(len(heads) != nb_subtokens):
|
|
raise ValueError(Errors.E115)
|
|
# First, make the dependencies absolutes
|
|
for i in range(doc.length):
|
|
doc.c[i].head += i
|
|
# Adjust dependencies, so they refer to post-split indexing
|
|
offset = nb_subtokens - 1
|
|
for i in range(doc.length):
|
|
if doc.c[i].head > token_index:
|
|
doc.c[i].head += offset
|
|
# Double doc.c max_length if necessary (until big enough for all new tokens)
|
|
while doc.length + nb_subtokens - 1 >= doc.max_length:
|
|
doc._realloc(doc.max_length * 2)
|
|
# Move tokens after the split to create space for the new tokens
|
|
doc.length = len(doc) + nb_subtokens -1
|
|
to_process_tensor = (doc.tensor is not None and doc.tensor.size != 0)
|
|
if to_process_tensor:
|
|
xp = get_array_module(doc.tensor)
|
|
doc.tensor = xp.append(doc.tensor, xp.zeros((nb_subtokens,doc.tensor.shape[1]), dtype="float32"), axis=0)
|
|
for token_to_move in range(orig_length - 1, token_index, -1):
|
|
doc.c[token_to_move + nb_subtokens - 1] = doc.c[token_to_move]
|
|
if to_process_tensor:
|
|
doc.tensor[token_to_move + nb_subtokens - 1] = doc.tensor[token_to_move]
|
|
# Host the tokens in the newly created space
|
|
cdef int idx_offset = 0
|
|
for i, orth in enumerate(orths):
|
|
token = &doc.c[token_index + i]
|
|
lex = doc.vocab.get(doc.mem, orth)
|
|
token.lex = lex
|
|
token.lemma = 0 # reset lemma
|
|
if to_process_tensor:
|
|
# setting the tensors of the split tokens to array of zeros
|
|
doc.tensor[token_index + i] = xp.zeros((1,doc.tensor.shape[1]), dtype="float32")
|
|
# Update the character offset of the subtokens
|
|
if i != 0:
|
|
token.idx = orig_token.idx + idx_offset
|
|
idx_offset += len(orth)
|
|
# Set token.spacy to False for all non-last split tokens, and
|
|
# to origToken.spacy for the last token
|
|
if (i < nb_subtokens - 1):
|
|
token.spacy = False
|
|
else:
|
|
token.spacy = orig_token.spacy
|
|
# Make IOB consistent
|
|
if (orig_token.ent_iob == 3):
|
|
if i == 0:
|
|
token.ent_iob = 3
|
|
else:
|
|
token.ent_iob = 1
|
|
else:
|
|
# In all other cases subtokens inherit iob from origToken
|
|
token.ent_iob = orig_token.ent_iob
|
|
# Apply attrs to each subtoken
|
|
for attr_name, attr_values in attrs.items():
|
|
for i, attr_value in enumerate(attr_values):
|
|
token = &doc.c[token_index + i]
|
|
if attr_name == "_":
|
|
for ext_attr_key, ext_attr_value in attr_value.items():
|
|
doc[token_index + i]._.set(ext_attr_key, ext_attr_value)
|
|
# NB: We need to call get_string_id here because only the keys are
|
|
# "intified" (since we support "KEY": [value, value] syntax here).
|
|
elif attr_name == TAG:
|
|
doc.vocab.morphology.assign_tag(token, get_string_id(attr_value))
|
|
else:
|
|
# Set attributes on both token and lexeme to take care of token
|
|
# attribute vs. lexical attribute without having to enumerate
|
|
# them. If an attribute name is not valid, set_struct_attr will
|
|
# ignore it.
|
|
Token.set_struct_attr(token, attr_name, get_string_id(attr_value))
|
|
Lexeme.set_struct_attr(<LexemeC*>token.lex, attr_name, get_string_id(attr_value))
|
|
# Assign correct dependencies to the inner token
|
|
for i, head in enumerate(heads):
|
|
doc.c[token_index + i].head = head
|
|
# Transform the dependencies into relative ones again
|
|
for i in range(doc.length):
|
|
doc.c[i].head -= i
|
|
# set children from head
|
|
set_children_from_heads(doc.c, doc.length)
|
|
|
|
|
|
def _validate_extensions(extensions):
|
|
if not isinstance(extensions, dict):
|
|
raise ValueError(Errors.E120.format(value=repr(extensions)))
|
|
for key, value in extensions.items():
|
|
# Get the extension and make sure it's available and writable
|
|
extension = Token.get_extension(key)
|
|
if not extension: # Extension attribute doesn't exist
|
|
raise ValueError(Errors.E118.format(attr=key))
|
|
if not is_writable_attr(extension):
|
|
raise ValueError(Errors.E119.format(attr=key))
|
|
|
|
|
|
cdef make_iob_consistent(TokenC* tokens, int length):
|
|
cdef int i
|
|
if tokens[0].ent_iob == 1:
|
|
tokens[0].ent_iob = 3
|
|
for i in range(1, length):
|
|
if tokens[i].ent_iob == 1 and tokens[i - 1].ent_type != tokens[i].ent_type:
|
|
tokens[i].ent_iob = 3
|
|
|
|
|
|
def normalize_token_attrs(Vocab vocab, attrs):
|
|
if "_" in attrs: # Extension attributes
|
|
extensions = attrs["_"]
|
|
print("EXTENSIONS", extensions)
|
|
_validate_extensions(extensions)
|
|
attrs = {key: value for key, value in attrs.items() if key != "_"}
|
|
attrs = intify_attrs(attrs, strings_map=vocab.strings)
|
|
attrs["_"] = extensions
|
|
else:
|
|
attrs = intify_attrs(attrs, strings_map=vocab.strings)
|
|
if MORPH in attrs:
|
|
# add and set to normalized value
|
|
morph = vocab.morphology.add(vocab.strings.as_string(attrs[MORPH]))
|
|
attrs[MORPH] = morph
|
|
return attrs
|
|
|
|
|
|
def set_token_attrs(Token py_token, attrs):
|
|
cdef TokenC* token = py_token.c
|
|
cdef const LexemeC* lex = token.lex
|
|
cdef Doc doc = py_token.doc
|
|
# Assign attributes
|
|
for attr_name, attr_value in attrs.items():
|
|
if attr_name == "_": # Set extension attributes
|
|
for ext_attr_key, ext_attr_value in attr_value.items():
|
|
py_token._.set(ext_attr_key, ext_attr_value)
|
|
elif attr_name == TAG:
|
|
doc.vocab.morphology.assign_tag(token, attr_value)
|
|
else:
|
|
# Set attributes on both token and lexeme to take care of token
|
|
# attribute vs. lexical attribute without having to enumerate
|
|
# them. If an attribute name is not valid, set_struct_attr will
|
|
# ignore it.
|
|
Token.set_struct_attr(token, attr_name, attr_value)
|
|
Lexeme.set_struct_attr(<LexemeC*>lex, attr_name, attr_value)
|