mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-03 22:06:37 +03:00
496 lines
18 KiB
Python
496 lines
18 KiB
Python
import pytest
|
|
|
|
from spacy.attrs import LEMMA
|
|
from spacy.tokens import Doc, Token
|
|
from spacy.vocab import Vocab
|
|
|
|
|
|
def test_doc_retokenize_merge(en_tokenizer):
|
|
text = "WKRO played songs by the beach boys all night"
|
|
attrs = {
|
|
"tag": "NAMED",
|
|
"lemma": "LEMMA",
|
|
"ent_type": "TYPE",
|
|
"morph": "Number=Plur",
|
|
}
|
|
doc = en_tokenizer(text)
|
|
assert len(doc) == 9
|
|
with doc.retokenize() as retokenizer:
|
|
retokenizer.merge(doc[4:7], attrs=attrs)
|
|
retokenizer.merge(doc[7:9], attrs=attrs)
|
|
assert len(doc) == 6
|
|
assert doc[4].text == "the beach boys"
|
|
assert doc[4].text_with_ws == "the beach boys "
|
|
assert doc[4].tag_ == "NAMED"
|
|
assert doc[4].lemma_ == "LEMMA"
|
|
assert str(doc[4].morph) == "Number=Plur"
|
|
assert doc[5].text == "all night"
|
|
assert doc[5].text_with_ws == "all night"
|
|
assert doc[5].tag_ == "NAMED"
|
|
assert str(doc[5].morph) == "Number=Plur"
|
|
assert doc[5].lemma_ == "LEMMA"
|
|
|
|
|
|
def test_doc_retokenize_merge_children(en_tokenizer):
|
|
"""Test that attachments work correctly after merging."""
|
|
text = "WKRO played songs by the beach boys all night"
|
|
attrs = {"tag": "NAMED", "lemma": "LEMMA", "ent_type": "TYPE"}
|
|
doc = en_tokenizer(text)
|
|
assert len(doc) == 9
|
|
with doc.retokenize() as retokenizer:
|
|
retokenizer.merge(doc[4:7], attrs=attrs)
|
|
for word in doc:
|
|
if word.i < word.head.i:
|
|
assert word in list(word.head.lefts)
|
|
elif word.i > word.head.i:
|
|
assert word in list(word.head.rights)
|
|
|
|
|
|
def test_doc_retokenize_merge_hang(en_tokenizer):
|
|
text = "through North and South Carolina"
|
|
doc = en_tokenizer(text)
|
|
with doc.retokenize() as retokenizer:
|
|
retokenizer.merge(doc[3:5], attrs={"lemma": "", "ent_type": "ORG"})
|
|
retokenizer.merge(doc[1:2], attrs={"lemma": "", "ent_type": "ORG"})
|
|
|
|
|
|
def test_doc_retokenize_retokenizer(en_tokenizer):
|
|
doc = en_tokenizer("WKRO played songs by the beach boys all night")
|
|
with doc.retokenize() as retokenizer:
|
|
retokenizer.merge(doc[4:7])
|
|
assert len(doc) == 7
|
|
assert doc[4].text == "the beach boys"
|
|
|
|
|
|
def test_doc_retokenize_retokenizer_attrs(en_tokenizer):
|
|
doc = en_tokenizer("WKRO played songs by the beach boys all night")
|
|
# test both string and integer attributes and values
|
|
attrs = {LEMMA: "boys", "ENT_TYPE": doc.vocab.strings["ORG"]}
|
|
with doc.retokenize() as retokenizer:
|
|
retokenizer.merge(doc[4:7], attrs=attrs)
|
|
assert len(doc) == 7
|
|
assert doc[4].text == "the beach boys"
|
|
assert doc[4].lemma_ == "boys"
|
|
assert doc[4].ent_type_ == "ORG"
|
|
|
|
|
|
def test_doc_retokenize_lex_attrs(en_tokenizer):
|
|
"""Test that lexical attributes can be changed (see #2390)."""
|
|
doc = en_tokenizer("WKRO played beach boys songs")
|
|
assert not any(token.is_stop for token in doc)
|
|
with doc.retokenize() as retokenizer:
|
|
retokenizer.merge(doc[2:4], attrs={"LEMMA": "boys", "IS_STOP": True})
|
|
assert doc[2].text == "beach boys"
|
|
assert doc[2].lemma_ == "boys"
|
|
assert doc[2].is_stop
|
|
new_doc = Doc(doc.vocab, words=["beach boys"])
|
|
assert new_doc[0].is_stop
|
|
|
|
|
|
def test_doc_retokenize_spans_merge_tokens(en_tokenizer):
|
|
text = "Los Angeles start."
|
|
heads = [1, 2, 2, 2]
|
|
deps = ["dep"] * len(heads)
|
|
tokens = en_tokenizer(text)
|
|
doc = Doc(tokens.vocab, words=[t.text for t in tokens], heads=heads, deps=deps)
|
|
assert len(doc) == 4
|
|
assert doc[0].head.text == "Angeles"
|
|
assert doc[1].head.text == "start"
|
|
with doc.retokenize() as retokenizer:
|
|
attrs = {"tag": "NNP", "lemma": "Los Angeles", "ent_type": "GPE"}
|
|
retokenizer.merge(doc[0:2], attrs=attrs)
|
|
assert len(doc) == 3
|
|
assert doc[0].text == "Los Angeles"
|
|
assert doc[0].head.text == "start"
|
|
assert doc[0].ent_type_ == "GPE"
|
|
|
|
|
|
def test_doc_retokenize_spans_merge_tokens_default_attrs(en_vocab):
|
|
words = ["The", "players", "start", "."]
|
|
lemmas = [t.lower() for t in words]
|
|
heads = [1, 2, 2, 2]
|
|
deps = ["dep"] * len(heads)
|
|
tags = ["DT", "NN", "VBZ", "."]
|
|
pos = ["DET", "NOUN", "VERB", "PUNCT"]
|
|
doc = Doc(
|
|
en_vocab, words=words, tags=tags, pos=pos, heads=heads, deps=deps, lemmas=lemmas
|
|
)
|
|
assert len(doc) == 4
|
|
assert doc[0].text == "The"
|
|
assert doc[0].tag_ == "DT"
|
|
assert doc[0].pos_ == "DET"
|
|
assert doc[0].lemma_ == "the"
|
|
with doc.retokenize() as retokenizer:
|
|
retokenizer.merge(doc[0:2])
|
|
assert len(doc) == 3
|
|
assert doc[0].text == "The players"
|
|
assert doc[0].tag_ == "NN"
|
|
assert doc[0].pos_ == "NOUN"
|
|
assert doc[0].lemma_ == "the players"
|
|
doc = Doc(
|
|
en_vocab, words=words, tags=tags, pos=pos, heads=heads, deps=deps, lemmas=lemmas
|
|
)
|
|
assert len(doc) == 4
|
|
assert doc[0].text == "The"
|
|
assert doc[0].tag_ == "DT"
|
|
assert doc[0].pos_ == "DET"
|
|
assert doc[0].lemma_ == "the"
|
|
with doc.retokenize() as retokenizer:
|
|
retokenizer.merge(doc[0:2])
|
|
retokenizer.merge(doc[2:4])
|
|
assert len(doc) == 2
|
|
assert doc[0].text == "The players"
|
|
assert doc[0].tag_ == "NN"
|
|
assert doc[0].pos_ == "NOUN"
|
|
assert doc[0].lemma_ == "the players"
|
|
assert doc[1].text == "start ."
|
|
assert doc[1].tag_ == "VBZ"
|
|
assert doc[1].pos_ == "VERB"
|
|
assert doc[1].lemma_ == "start ."
|
|
|
|
|
|
def test_doc_retokenize_spans_merge_heads(en_vocab):
|
|
words = ["I", "found", "a", "pilates", "class", "near", "work", "."]
|
|
heads = [1, 1, 4, 6, 1, 4, 5, 1]
|
|
deps = ["dep"] * len(heads)
|
|
doc = Doc(en_vocab, words=words, heads=heads, deps=deps)
|
|
assert len(doc) == 8
|
|
with doc.retokenize() as retokenizer:
|
|
attrs = {"tag": doc[4].tag_, "lemma": "pilates class", "ent_type": "O"}
|
|
retokenizer.merge(doc[3:5], attrs=attrs)
|
|
assert len(doc) == 7
|
|
assert doc[0].head.i == 1
|
|
assert doc[1].head.i == 1
|
|
assert doc[2].head.i == 3
|
|
assert doc[3].head.i == 1
|
|
assert doc[4].head.i in [1, 3]
|
|
assert doc[5].head.i == 4
|
|
|
|
|
|
def test_doc_retokenize_spans_merge_non_disjoint(en_tokenizer):
|
|
text = "Los Angeles start."
|
|
doc = en_tokenizer(text)
|
|
with pytest.raises(ValueError):
|
|
with doc.retokenize() as retokenizer:
|
|
retokenizer.merge(
|
|
doc[0:2],
|
|
attrs={"tag": "NNP", "lemma": "Los Angeles", "ent_type": "GPE"},
|
|
)
|
|
retokenizer.merge(
|
|
doc[0:1],
|
|
attrs={"tag": "NNP", "lemma": "Los Angeles", "ent_type": "GPE"},
|
|
)
|
|
|
|
|
|
def test_doc_retokenize_span_np_merges(en_tokenizer):
|
|
text = "displaCy is a parse tool built with Javascript"
|
|
heads = [1, 1, 4, 4, 1, 4, 5, 6]
|
|
deps = ["dep"] * len(heads)
|
|
tokens = en_tokenizer(text)
|
|
doc = Doc(tokens.vocab, words=[t.text for t in tokens], heads=heads, deps=deps)
|
|
assert doc[4].head.i == 1
|
|
with doc.retokenize() as retokenizer:
|
|
attrs = {"tag": "NP", "lemma": "tool", "ent_type": "O"}
|
|
retokenizer.merge(doc[2:5], attrs=attrs)
|
|
assert doc[2].head.i == 1
|
|
|
|
text = "displaCy is a lightweight and modern dependency parse tree visualization tool built with CSS3 and JavaScript."
|
|
heads = [1, 1, 10, 7, 3, 3, 7, 10, 9, 10, 1, 10, 11, 12, 13, 13, 1]
|
|
deps = ["dep"] * len(heads)
|
|
tokens = en_tokenizer(text)
|
|
doc = Doc(tokens.vocab, words=[t.text for t in tokens], heads=heads, deps=deps)
|
|
with doc.retokenize() as retokenizer:
|
|
for ent in doc.ents:
|
|
attrs = {"tag": ent.label_, "lemma": ent.lemma_, "ent_type": ent.label_}
|
|
retokenizer.merge(ent, attrs=attrs)
|
|
|
|
text = "One test with entities like New York City so the ents list is not void"
|
|
heads = [1, 1, 1, 2, 3, 6, 7, 4, 12, 11, 11, 12, 1, 12, 12]
|
|
deps = ["dep"] * len(heads)
|
|
tokens = en_tokenizer(text)
|
|
doc = Doc(tokens.vocab, words=[t.text for t in tokens], heads=heads, deps=deps)
|
|
with doc.retokenize() as retokenizer:
|
|
for ent in doc.ents:
|
|
retokenizer.merge(ent)
|
|
|
|
|
|
def test_doc_retokenize_spans_entity_merge(en_tokenizer):
|
|
# fmt: off
|
|
text = "Stewart Lee is a stand up comedian who lives in England and loves Joe Pasquale.\n"
|
|
heads = [1, 2, 2, 4, 6, 4, 2, 8, 6, 8, 9, 8, 8, 14, 12, 2, 15]
|
|
deps = ["dep"] * len(heads)
|
|
tags = ["NNP", "NNP", "VBZ", "DT", "VB", "RP", "NN", "WP", "VBZ", "IN", "NNP", "CC", "VBZ", "NNP", "NNP", ".", "SP"]
|
|
ents = [("PERSON", 0, 2), ("GPE", 10, 11), ("PERSON", 13, 15)]
|
|
ents = ["O"] * len(heads)
|
|
ents[0] = "B-PERSON"
|
|
ents[1] = "I-PERSON"
|
|
ents[10] = "B-GPE"
|
|
ents[13] = "B-PERSON"
|
|
ents[14] = "I-PERSON"
|
|
# fmt: on
|
|
tokens = en_tokenizer(text)
|
|
doc = Doc(
|
|
tokens.vocab,
|
|
words=[t.text for t in tokens],
|
|
heads=heads,
|
|
deps=deps,
|
|
tags=tags,
|
|
ents=ents,
|
|
)
|
|
assert len(doc) == 17
|
|
with doc.retokenize() as retokenizer:
|
|
for ent in doc.ents:
|
|
ent_type = max(w.ent_type_ for w in ent)
|
|
attrs = {"lemma": ent.root.lemma_, "ent_type": ent_type}
|
|
retokenizer.merge(ent, attrs=attrs)
|
|
# check looping is ok
|
|
assert len(doc) == 15
|
|
|
|
|
|
def test_doc_retokenize_spans_entity_merge_iob(en_vocab):
|
|
# Test entity IOB stays consistent after merging
|
|
words = ["a", "b", "c", "d", "e"]
|
|
doc = Doc(Vocab(), words=words)
|
|
doc.ents = [
|
|
(doc.vocab.strings.add("ent-abc"), 0, 3),
|
|
(doc.vocab.strings.add("ent-d"), 3, 4),
|
|
]
|
|
assert doc[0].ent_iob_ == "B"
|
|
assert doc[1].ent_iob_ == "I"
|
|
assert doc[2].ent_iob_ == "I"
|
|
assert doc[3].ent_iob_ == "B"
|
|
with doc.retokenize() as retokenizer:
|
|
retokenizer.merge(doc[0:2])
|
|
assert len(doc) == len(words) - 1
|
|
assert doc[0].ent_iob_ == "B"
|
|
assert doc[1].ent_iob_ == "I"
|
|
|
|
# Test that IOB stays consistent with provided IOB
|
|
words = ["a", "b", "c", "d", "e"]
|
|
doc = Doc(Vocab(), words=words)
|
|
with doc.retokenize() as retokenizer:
|
|
attrs = {"ent_type": "ent-abc", "ent_iob": 1}
|
|
retokenizer.merge(doc[0:3], attrs=attrs)
|
|
retokenizer.merge(doc[3:5], attrs=attrs)
|
|
assert doc[0].ent_iob_ == "B"
|
|
assert doc[1].ent_iob_ == "I"
|
|
|
|
# if no parse/heads, the first word in the span is the root and provides
|
|
# default values
|
|
words = ["a", "b", "c", "d", "e", "f", "g", "h", "i"]
|
|
doc = Doc(Vocab(), words=words)
|
|
doc.ents = [
|
|
(doc.vocab.strings.add("ent-de"), 3, 5),
|
|
(doc.vocab.strings.add("ent-fg"), 5, 7),
|
|
]
|
|
assert doc[3].ent_iob_ == "B"
|
|
assert doc[4].ent_iob_ == "I"
|
|
assert doc[5].ent_iob_ == "B"
|
|
assert doc[6].ent_iob_ == "I"
|
|
with doc.retokenize() as retokenizer:
|
|
retokenizer.merge(doc[2:4])
|
|
retokenizer.merge(doc[4:6])
|
|
retokenizer.merge(doc[7:9])
|
|
assert len(doc) == 6
|
|
assert doc[3].ent_iob_ == "B"
|
|
assert doc[3].ent_type_ == "ent-de"
|
|
assert doc[4].ent_iob_ == "B"
|
|
assert doc[4].ent_type_ == "ent-fg"
|
|
|
|
# if there is a parse, span.root provides default values
|
|
words = ["a", "b", "c", "d", "e", "f", "g", "h", "i"]
|
|
heads = [0, 0, 3, 0, 0, 0, 5, 0, 0]
|
|
ents = ["O"] * len(words)
|
|
ents[3] = "B-ent-de"
|
|
ents[4] = "I-ent-de"
|
|
ents[5] = "B-ent-fg"
|
|
ents[6] = "I-ent-fg"
|
|
deps = ["dep"] * len(words)
|
|
en_vocab.strings.add("ent-de")
|
|
en_vocab.strings.add("ent-fg")
|
|
en_vocab.strings.add("dep")
|
|
doc = Doc(en_vocab, words=words, heads=heads, deps=deps, ents=ents)
|
|
assert doc[2:4].root == doc[3] # root of 'c d' is d
|
|
assert doc[4:6].root == doc[4] # root is 'e f' is e
|
|
with doc.retokenize() as retokenizer:
|
|
retokenizer.merge(doc[2:4])
|
|
retokenizer.merge(doc[4:6])
|
|
retokenizer.merge(doc[7:9])
|
|
assert len(doc) == 6
|
|
assert doc[2].ent_iob_ == "B"
|
|
assert doc[2].ent_type_ == "ent-de"
|
|
assert doc[3].ent_iob_ == "I"
|
|
assert doc[3].ent_type_ == "ent-de"
|
|
assert doc[4].ent_iob_ == "B"
|
|
assert doc[4].ent_type_ == "ent-fg"
|
|
|
|
# check that B is preserved if span[start] is B
|
|
words = ["a", "b", "c", "d", "e", "f", "g", "h", "i"]
|
|
heads = [0, 0, 3, 4, 0, 0, 5, 0, 0]
|
|
ents = ["O"] * len(words)
|
|
ents[3] = "B-ent-de"
|
|
ents[4] = "I-ent-de"
|
|
ents[5] = "B-ent-de"
|
|
ents[6] = "I-ent-de"
|
|
deps = ["dep"] * len(words)
|
|
doc = Doc(en_vocab, words=words, heads=heads, deps=deps, ents=ents)
|
|
with doc.retokenize() as retokenizer:
|
|
retokenizer.merge(doc[3:5])
|
|
retokenizer.merge(doc[5:7])
|
|
assert len(doc) == 7
|
|
assert doc[3].ent_iob_ == "B"
|
|
assert doc[3].ent_type_ == "ent-de"
|
|
assert doc[4].ent_iob_ == "B"
|
|
assert doc[4].ent_type_ == "ent-de"
|
|
|
|
|
|
def test_doc_retokenize_spans_sentence_update_after_merge(en_tokenizer):
|
|
# fmt: off
|
|
text = "Stewart Lee is a stand up comedian. He lives in England and loves Joe Pasquale."
|
|
heads = [1, 2, 2, 4, 2, 4, 4, 2, 9, 9, 9, 10, 9, 9, 15, 13, 9]
|
|
deps = ['compound', 'nsubj', 'ROOT', 'det', 'amod', 'prt', 'attr',
|
|
'punct', 'nsubj', 'ROOT', 'prep', 'pobj', 'cc', 'conj',
|
|
'compound', 'dobj', 'punct']
|
|
# fmt: on
|
|
tokens = en_tokenizer(text)
|
|
doc = Doc(tokens.vocab, words=[t.text for t in tokens], heads=heads, deps=deps)
|
|
sent1, sent2 = list(doc.sents)
|
|
init_len = len(sent1)
|
|
init_len2 = len(sent2)
|
|
with doc.retokenize() as retokenizer:
|
|
attrs = {"lemma": "none", "ent_type": "none"}
|
|
retokenizer.merge(doc[0:2], attrs=attrs)
|
|
retokenizer.merge(doc[-2:], attrs=attrs)
|
|
sent1, sent2 = list(doc.sents)
|
|
assert len(sent1) == init_len - 1
|
|
assert len(sent2) == init_len2 - 1
|
|
|
|
|
|
def test_doc_retokenize_spans_subtree_size_check(en_tokenizer):
|
|
# fmt: off
|
|
text = "Stewart Lee is a stand up comedian who lives in England and loves Joe Pasquale"
|
|
heads = [1, 2, 2, 4, 6, 4, 2, 8, 6, 8, 9, 8, 8, 14, 12]
|
|
deps = ["compound", "nsubj", "ROOT", "det", "amod", "prt", "attr",
|
|
"nsubj", "relcl", "prep", "pobj", "cc", "conj", "compound",
|
|
"dobj"]
|
|
# fmt: on
|
|
tokens = en_tokenizer(text)
|
|
doc = Doc(tokens.vocab, words=[t.text for t in tokens], heads=heads, deps=deps)
|
|
sent1 = list(doc.sents)[0]
|
|
init_len = len(list(sent1.root.subtree))
|
|
with doc.retokenize() as retokenizer:
|
|
attrs = {"lemma": "none", "ent_type": "none"}
|
|
retokenizer.merge(doc[0:2], attrs=attrs)
|
|
assert len(list(sent1.root.subtree)) == init_len - 1
|
|
|
|
|
|
def test_doc_retokenize_merge_extension_attrs(en_vocab):
|
|
Token.set_extension("a", default=False, force=True)
|
|
Token.set_extension("b", default="nothing", force=True)
|
|
doc = Doc(en_vocab, words=["hello", "world", "!"])
|
|
# Test regular merging
|
|
with doc.retokenize() as retokenizer:
|
|
attrs = {"lemma": "hello world", "_": {"a": True, "b": "1"}}
|
|
retokenizer.merge(doc[0:2], attrs=attrs)
|
|
assert doc[0].lemma_ == "hello world"
|
|
assert doc[0]._.a is True
|
|
assert doc[0]._.b == "1"
|
|
# Test bulk merging
|
|
doc = Doc(en_vocab, words=["hello", "world", "!", "!"])
|
|
with doc.retokenize() as retokenizer:
|
|
retokenizer.merge(doc[0:2], attrs={"_": {"a": True, "b": "1"}})
|
|
retokenizer.merge(doc[2:4], attrs={"_": {"a": None, "b": "2"}})
|
|
assert doc[0]._.a is True
|
|
assert doc[0]._.b == "1"
|
|
assert doc[1]._.a is None
|
|
assert doc[1]._.b == "2"
|
|
|
|
|
|
@pytest.mark.parametrize("underscore_attrs", [{"a": "x"}, {"b": "x"}, {"c": "x"}, [1]])
|
|
def test_doc_retokenize_merge_extension_attrs_invalid(en_vocab, underscore_attrs):
|
|
Token.set_extension("a", getter=lambda x: x, force=True)
|
|
Token.set_extension("b", method=lambda x: x, force=True)
|
|
doc = Doc(en_vocab, words=["hello", "world", "!"])
|
|
attrs = {"_": underscore_attrs}
|
|
with pytest.raises(ValueError):
|
|
with doc.retokenize() as retokenizer:
|
|
retokenizer.merge(doc[0:2], attrs=attrs)
|
|
|
|
|
|
def test_doc_retokenizer_merge_lex_attrs(en_vocab):
|
|
"""Test that retokenization also sets attributes on the lexeme if they're
|
|
lexical attributes. For example, if a user sets IS_STOP, it should mean that
|
|
"all tokens with that lexeme" are marked as a stop word, so the ambiguity
|
|
here is acceptable. Also see #2390.
|
|
"""
|
|
# Test regular merging
|
|
doc = Doc(en_vocab, words=["hello", "world", "!"])
|
|
assert not any(t.is_stop for t in doc)
|
|
with doc.retokenize() as retokenizer:
|
|
retokenizer.merge(doc[0:2], attrs={"lemma": "hello world", "is_stop": True})
|
|
assert doc[0].lemma_ == "hello world"
|
|
assert doc[0].is_stop
|
|
# Test bulk merging
|
|
doc = Doc(en_vocab, words=["eins", "zwei", "!", "!"])
|
|
assert not any(t.like_num for t in doc)
|
|
assert not any(t.is_stop for t in doc)
|
|
with doc.retokenize() as retokenizer:
|
|
retokenizer.merge(doc[0:2], attrs={"like_num": True})
|
|
retokenizer.merge(doc[2:4], attrs={"is_stop": True})
|
|
assert doc[0].like_num
|
|
assert doc[1].is_stop
|
|
assert not doc[0].is_stop
|
|
assert not doc[1].like_num
|
|
# Test that norm is only set on tokens
|
|
doc = Doc(en_vocab, words=["eins", "zwei", "!", "!"])
|
|
assert doc[0].norm_ == "eins"
|
|
with doc.retokenize() as retokenizer:
|
|
retokenizer.merge(doc[0:1], attrs={"norm": "1"})
|
|
assert doc[0].norm_ == "1"
|
|
assert en_vocab["eins"].norm_ == "eins"
|
|
|
|
|
|
def test_retokenize_skip_duplicates(en_vocab):
|
|
"""Test that the retokenizer automatically skips duplicate spans instead
|
|
of complaining about overlaps. See #3687."""
|
|
doc = Doc(en_vocab, words=["hello", "world", "!"])
|
|
with doc.retokenize() as retokenizer:
|
|
retokenizer.merge(doc[0:2])
|
|
retokenizer.merge(doc[0:2])
|
|
assert len(doc) == 2
|
|
assert doc[0].text == "hello world"
|
|
|
|
|
|
def test_retokenize_disallow_zero_length(en_vocab):
|
|
doc = Doc(en_vocab, words=["hello", "world", "!"])
|
|
with pytest.raises(ValueError):
|
|
with doc.retokenize() as retokenizer:
|
|
retokenizer.merge(doc[1:1])
|
|
|
|
|
|
def test_doc_retokenize_merge_without_parse_keeps_sents(en_tokenizer):
|
|
text = "displaCy is a parse tool built with Javascript"
|
|
sent_starts = [1, 0, 0, 0, 1, 0, 0, 0]
|
|
tokens = en_tokenizer(text)
|
|
|
|
# merging within a sentence keeps all sentence boundaries
|
|
doc = Doc(tokens.vocab, words=[t.text for t in tokens], sent_starts=sent_starts)
|
|
assert len(list(doc.sents)) == 2
|
|
with doc.retokenize() as retokenizer:
|
|
retokenizer.merge(doc[1:3])
|
|
assert len(list(doc.sents)) == 2
|
|
|
|
# merging over a sentence boundary unsets it by default
|
|
doc = Doc(tokens.vocab, words=[t.text for t in tokens], sent_starts=sent_starts)
|
|
assert len(list(doc.sents)) == 2
|
|
with doc.retokenize() as retokenizer:
|
|
retokenizer.merge(doc[3:6])
|
|
assert doc[3].is_sent_start is None
|
|
|
|
# merging over a sentence boundary and setting sent_start
|
|
doc = Doc(tokens.vocab, words=[t.text for t in tokens], sent_starts=sent_starts)
|
|
assert len(list(doc.sents)) == 2
|
|
with doc.retokenize() as retokenizer:
|
|
retokenizer.merge(doc[3:6], attrs={"sent_start": True})
|
|
assert len(list(doc.sents)) == 2
|