1
1
mirror of https://github.com/explosion/spaCy.git synced 2025-01-18 21:44:12 +03:00
spaCy/spacy/tests/lang/da/test_noun_chunks.py
Daniël de Kok e2b70df012
Configure isort to use the Black profile, recursively isort the spacy module ()
* Use isort with Black profile

* isort all the things

* Fix import cycles as a result of import sorting

* Add DOCBIN_ALL_ATTRS type definition

* Add isort to requirements

* Remove isort from build dependencies check

* Typo
2023-06-14 17:48:41 +02:00

72 lines
2.0 KiB
Python

import pytest
from spacy.tokens import Doc
def test_noun_chunks_is_parsed(da_tokenizer):
"""Test that noun_chunks raises Value Error for 'da' language if Doc is not parsed.
To check this test, we're constructing a Doc
with a new Vocab here and forcing is_parsed to 'False'
to make sure the noun chunks don't run.
"""
doc = da_tokenizer("Det er en sætning")
with pytest.raises(ValueError):
list(doc.noun_chunks)
DA_NP_TEST_EXAMPLES = [
(
"Hun elsker at plukker frugt.",
["PRON", "VERB", "PART", "VERB", "NOUN", "PUNCT"],
["nsubj", "ROOT", "mark", "obj", "obj", "punct"],
[1, 0, 1, -2, -1, -4],
["Hun", "frugt"],
),
(
"Påfugle er de smukkeste fugle.",
["NOUN", "AUX", "DET", "ADJ", "NOUN", "PUNCT"],
["nsubj", "cop", "det", "amod", "ROOT", "punct"],
[4, 3, 2, 1, 0, -1],
["Påfugle", "de smukkeste fugle"],
),
(
"Rikke og Jacob Jensen glæder sig til en hyggelig skovtur",
[
"PROPN",
"CCONJ",
"PROPN",
"PROPN",
"VERB",
"PRON",
"ADP",
"DET",
"ADJ",
"NOUN",
],
["nsubj", "cc", "conj", "flat", "ROOT", "obj", "case", "det", "amod", "obl"],
[4, 1, -2, -1, 0, -1, 3, 2, 1, -5],
["Rikke", "Jacob Jensen", "sig", "en hyggelig skovtur"],
),
]
@pytest.mark.parametrize(
"text,pos,deps,heads,expected_noun_chunks", DA_NP_TEST_EXAMPLES
)
def test_da_noun_chunks(da_tokenizer, text, pos, deps, heads, expected_noun_chunks):
tokens = da_tokenizer(text)
assert len(heads) == len(pos)
doc = Doc(
tokens.vocab,
words=[t.text for t in tokens],
heads=[head + i for i, head in enumerate(heads)],
deps=deps,
pos=pos,
)
noun_chunks = list(doc.noun_chunks)
assert len(noun_chunks) == len(expected_noun_chunks)
for i, np in enumerate(noun_chunks):
assert np.text == expected_noun_chunks[i]