mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 18:07:26 +03:00 
			
		
		
		
	* Use isort with Black profile * isort all the things * Fix import cycles as a result of import sorting * Add DOCBIN_ALL_ATTRS type definition * Add isort to requirements * Remove isort from build dependencies check * Typo
		
			
				
	
	
		
			227 lines
		
	
	
		
			7.9 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			227 lines
		
	
	
		
			7.9 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
import pytest
 | 
						|
from numpy.testing import assert_almost_equal, assert_equal
 | 
						|
from thinc.api import get_current_ops
 | 
						|
 | 
						|
from spacy import util
 | 
						|
from spacy.attrs import MORPH
 | 
						|
from spacy.lang.en import English
 | 
						|
from spacy.language import Language
 | 
						|
from spacy.morphology import Morphology
 | 
						|
from spacy.tests.util import make_tempdir
 | 
						|
from spacy.tokens import Doc
 | 
						|
from spacy.training import Example
 | 
						|
 | 
						|
 | 
						|
def test_label_types():
 | 
						|
    nlp = Language()
 | 
						|
    morphologizer = nlp.add_pipe("morphologizer")
 | 
						|
    morphologizer.add_label("Feat=A")
 | 
						|
    with pytest.raises(ValueError):
 | 
						|
        morphologizer.add_label(9)
 | 
						|
 | 
						|
 | 
						|
TAGS = ["Feat=N", "Feat=V", "Feat=J"]
 | 
						|
 | 
						|
TRAIN_DATA = [
 | 
						|
    (
 | 
						|
        "I like green eggs",
 | 
						|
        {
 | 
						|
            "morphs": ["Feat=N", "Feat=V", "Feat=J", "Feat=N"],
 | 
						|
            "pos": ["NOUN", "VERB", "ADJ", "NOUN"],
 | 
						|
        },
 | 
						|
    ),
 | 
						|
    # test combinations of morph+POS
 | 
						|
    ("Eat blue ham", {"morphs": ["Feat=V", "", ""], "pos": ["", "ADJ", ""]}),
 | 
						|
]
 | 
						|
 | 
						|
 | 
						|
def test_label_smoothing():
 | 
						|
    nlp = Language()
 | 
						|
    morph_no_ls = nlp.add_pipe("morphologizer", "no_label_smoothing")
 | 
						|
    morph_ls = nlp.add_pipe(
 | 
						|
        "morphologizer", "label_smoothing", config=dict(label_smoothing=0.05)
 | 
						|
    )
 | 
						|
    train_examples = []
 | 
						|
    losses = {}
 | 
						|
    for tag in TAGS:
 | 
						|
        morph_no_ls.add_label(tag)
 | 
						|
        morph_ls.add_label(tag)
 | 
						|
    for t in TRAIN_DATA:
 | 
						|
        train_examples.append(Example.from_dict(nlp.make_doc(t[0]), t[1]))
 | 
						|
 | 
						|
    nlp.initialize(get_examples=lambda: train_examples)
 | 
						|
    tag_scores, bp_tag_scores = morph_ls.model.begin_update(
 | 
						|
        [eg.predicted for eg in train_examples]
 | 
						|
    )
 | 
						|
    ops = get_current_ops()
 | 
						|
    no_ls_grads = ops.to_numpy(morph_no_ls.get_loss(train_examples, tag_scores)[1][0])
 | 
						|
    ls_grads = ops.to_numpy(morph_ls.get_loss(train_examples, tag_scores)[1][0])
 | 
						|
    assert_almost_equal(ls_grads / no_ls_grads, 0.94285715)
 | 
						|
 | 
						|
 | 
						|
def test_no_label():
 | 
						|
    nlp = Language()
 | 
						|
    nlp.add_pipe("morphologizer")
 | 
						|
    with pytest.raises(ValueError):
 | 
						|
        nlp.initialize()
 | 
						|
 | 
						|
 | 
						|
def test_implicit_label():
 | 
						|
    nlp = Language()
 | 
						|
    nlp.add_pipe("morphologizer")
 | 
						|
    train_examples = []
 | 
						|
    for t in TRAIN_DATA:
 | 
						|
        train_examples.append(Example.from_dict(nlp.make_doc(t[0]), t[1]))
 | 
						|
    nlp.initialize(get_examples=lambda: train_examples)
 | 
						|
 | 
						|
 | 
						|
def test_no_resize():
 | 
						|
    nlp = Language()
 | 
						|
    morphologizer = nlp.add_pipe("morphologizer")
 | 
						|
    morphologizer.add_label("POS" + Morphology.FIELD_SEP + "NOUN")
 | 
						|
    morphologizer.add_label("POS" + Morphology.FIELD_SEP + "VERB")
 | 
						|
    nlp.initialize()
 | 
						|
    # this throws an error because the morphologizer can't be resized after initialization
 | 
						|
    with pytest.raises(ValueError):
 | 
						|
        morphologizer.add_label("POS" + Morphology.FIELD_SEP + "ADJ")
 | 
						|
 | 
						|
 | 
						|
def test_initialize_examples():
 | 
						|
    nlp = Language()
 | 
						|
    morphologizer = nlp.add_pipe("morphologizer")
 | 
						|
    morphologizer.add_label("POS" + Morphology.FIELD_SEP + "NOUN")
 | 
						|
    train_examples = []
 | 
						|
    for t in TRAIN_DATA:
 | 
						|
        train_examples.append(Example.from_dict(nlp.make_doc(t[0]), t[1]))
 | 
						|
    # you shouldn't really call this more than once, but for testing it should be fine
 | 
						|
    nlp.initialize()
 | 
						|
    nlp.initialize(get_examples=lambda: train_examples)
 | 
						|
    with pytest.raises(TypeError):
 | 
						|
        nlp.initialize(get_examples=lambda: None)
 | 
						|
    with pytest.raises(TypeError):
 | 
						|
        nlp.initialize(get_examples=train_examples)
 | 
						|
 | 
						|
 | 
						|
def test_overfitting_IO():
 | 
						|
    # Simple test to try and quickly overfit the morphologizer - ensuring the ML models work correctly
 | 
						|
    nlp = English()
 | 
						|
    nlp.add_pipe("morphologizer")
 | 
						|
    train_examples = []
 | 
						|
    for inst in TRAIN_DATA:
 | 
						|
        train_examples.append(Example.from_dict(nlp.make_doc(inst[0]), inst[1]))
 | 
						|
    optimizer = nlp.initialize(get_examples=lambda: train_examples)
 | 
						|
 | 
						|
    for i in range(50):
 | 
						|
        losses = {}
 | 
						|
        nlp.update(train_examples, sgd=optimizer, losses=losses)
 | 
						|
    assert losses["morphologizer"] < 0.00001
 | 
						|
 | 
						|
    # test the trained model
 | 
						|
    test_text = "I like blue ham"
 | 
						|
    doc = nlp(test_text)
 | 
						|
    gold_morphs = ["Feat=N", "Feat=V", "", ""]
 | 
						|
    gold_pos_tags = ["NOUN", "VERB", "ADJ", ""]
 | 
						|
    assert [str(t.morph) for t in doc] == gold_morphs
 | 
						|
    assert [t.pos_ for t in doc] == gold_pos_tags
 | 
						|
 | 
						|
    # Also test the results are still the same after IO
 | 
						|
    with make_tempdir() as tmp_dir:
 | 
						|
        nlp.to_disk(tmp_dir)
 | 
						|
        nlp2 = util.load_model_from_path(tmp_dir)
 | 
						|
        doc2 = nlp2(test_text)
 | 
						|
        assert [str(t.morph) for t in doc2] == gold_morphs
 | 
						|
        assert [t.pos_ for t in doc2] == gold_pos_tags
 | 
						|
 | 
						|
    # Make sure that running pipe twice, or comparing to call, always amounts to the same predictions
 | 
						|
    texts = [
 | 
						|
        "Just a sentence.",
 | 
						|
        "Then one more sentence about London.",
 | 
						|
        "Here is another one.",
 | 
						|
        "I like London.",
 | 
						|
    ]
 | 
						|
    batch_deps_1 = [doc.to_array([MORPH]) for doc in nlp.pipe(texts)]
 | 
						|
    batch_deps_2 = [doc.to_array([MORPH]) for doc in nlp.pipe(texts)]
 | 
						|
    no_batch_deps = [doc.to_array([MORPH]) for doc in [nlp(text) for text in texts]]
 | 
						|
    assert_equal(batch_deps_1, batch_deps_2)
 | 
						|
    assert_equal(batch_deps_1, no_batch_deps)
 | 
						|
 | 
						|
    # Test without POS
 | 
						|
    nlp.remove_pipe("morphologizer")
 | 
						|
    nlp.add_pipe("morphologizer")
 | 
						|
    for example in train_examples:
 | 
						|
        for token in example.reference:
 | 
						|
            token.pos_ = ""
 | 
						|
    optimizer = nlp.initialize(get_examples=lambda: train_examples)
 | 
						|
    for i in range(50):
 | 
						|
        losses = {}
 | 
						|
        nlp.update(train_examples, sgd=optimizer, losses=losses)
 | 
						|
    assert losses["morphologizer"] < 0.00001
 | 
						|
 | 
						|
    # Test the trained model
 | 
						|
    test_text = "I like blue ham"
 | 
						|
    doc = nlp(test_text)
 | 
						|
    gold_morphs = ["Feat=N", "Feat=V", "", ""]
 | 
						|
    gold_pos_tags = ["", "", "", ""]
 | 
						|
    assert [str(t.morph) for t in doc] == gold_morphs
 | 
						|
    assert [t.pos_ for t in doc] == gold_pos_tags
 | 
						|
 | 
						|
    # Test overwrite+extend settings
 | 
						|
    # (note that "" is unset, "_" is set and empty)
 | 
						|
    morphs = ["Feat=V", "Feat=N", "_"]
 | 
						|
    doc = Doc(nlp.vocab, words=["blue", "ham", "like"], morphs=morphs)
 | 
						|
    orig_morphs = [str(t.morph) for t in doc]
 | 
						|
    orig_pos_tags = [t.pos_ for t in doc]
 | 
						|
    morphologizer = nlp.get_pipe("morphologizer")
 | 
						|
 | 
						|
    # don't overwrite or extend
 | 
						|
    morphologizer.cfg["overwrite"] = False
 | 
						|
    doc = morphologizer(doc)
 | 
						|
    assert [str(t.morph) for t in doc] == orig_morphs
 | 
						|
    assert [t.pos_ for t in doc] == orig_pos_tags
 | 
						|
 | 
						|
    # overwrite and extend
 | 
						|
    morphologizer.cfg["overwrite"] = True
 | 
						|
    morphologizer.cfg["extend"] = True
 | 
						|
    doc = Doc(nlp.vocab, words=["I", "like"], morphs=["Feat=A|That=A|This=A", ""])
 | 
						|
    doc = morphologizer(doc)
 | 
						|
    assert [str(t.morph) for t in doc] == ["Feat=N|That=A|This=A", "Feat=V"]
 | 
						|
 | 
						|
    # extend without overwriting
 | 
						|
    morphologizer.cfg["overwrite"] = False
 | 
						|
    morphologizer.cfg["extend"] = True
 | 
						|
    doc = Doc(nlp.vocab, words=["I", "like"], morphs=["Feat=A|That=A|This=A", "That=B"])
 | 
						|
    doc = morphologizer(doc)
 | 
						|
    assert [str(t.morph) for t in doc] == ["Feat=A|That=A|This=A", "Feat=V|That=B"]
 | 
						|
 | 
						|
    # overwrite without extending
 | 
						|
    morphologizer.cfg["overwrite"] = True
 | 
						|
    morphologizer.cfg["extend"] = False
 | 
						|
    doc = Doc(nlp.vocab, words=["I", "like"], morphs=["Feat=A|That=A|This=A", ""])
 | 
						|
    doc = morphologizer(doc)
 | 
						|
    assert [str(t.morph) for t in doc] == ["Feat=N", "Feat=V"]
 | 
						|
 | 
						|
    # Test with unset morph and partial POS
 | 
						|
    nlp.remove_pipe("morphologizer")
 | 
						|
    nlp.add_pipe("morphologizer")
 | 
						|
    for example in train_examples:
 | 
						|
        for token in example.reference:
 | 
						|
            if token.text == "ham":
 | 
						|
                token.pos_ = "NOUN"
 | 
						|
            else:
 | 
						|
                token.pos_ = ""
 | 
						|
            token.set_morph(None)
 | 
						|
    optimizer = nlp.initialize(get_examples=lambda: train_examples)
 | 
						|
    assert nlp.get_pipe("morphologizer").labels is not None
 | 
						|
    for i in range(50):
 | 
						|
        losses = {}
 | 
						|
        nlp.update(train_examples, sgd=optimizer, losses=losses)
 | 
						|
    assert losses["morphologizer"] < 0.00001
 | 
						|
 | 
						|
    # Test the trained model
 | 
						|
    test_text = "I like blue ham"
 | 
						|
    doc = nlp(test_text)
 | 
						|
    gold_morphs = ["", "", "", ""]
 | 
						|
    gold_pos_tags = ["NOUN", "NOUN", "NOUN", "NOUN"]
 | 
						|
    assert [str(t.morph) for t in doc] == gold_morphs
 | 
						|
    assert [t.pos_ for t in doc] == gold_pos_tags
 |