mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 09:57:26 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			177 lines
		
	
	
		
			5.7 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
			
		
		
	
	
			177 lines
		
	
	
		
			5.7 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
//- ----------------------------------
 | 
						|
//- 💫 DOCS > QUICKSTART > USAGE EXAMPLES
 | 
						|
//- ----------------------------------
 | 
						|
 | 
						|
+section("examples")
 | 
						|
    +h(2, "examples").
 | 
						|
        Usage Examples
 | 
						|
 | 
						|
    +h(3, "examples-resources") Load resources and process text
 | 
						|
 | 
						|
    +code.
 | 
						|
        import spacy
 | 
						|
        en_nlp = spacy.load('en')
 | 
						|
        en_doc = en_nlp(u'Hello, world. Here are two sentences.')
 | 
						|
        de_doc = de_nlp(u'ich bin ein Berliner.')
 | 
						|
 | 
						|
    +h(3, "multi-threaded") Multi-threaded generator (using OpenMP. No GIL!)
 | 
						|
 | 
						|
    +code.
 | 
						|
        texts = [u'One document.', u'...', u'Lots of documents']
 | 
						|
        # .pipe streams input, and produces streaming output
 | 
						|
        iter_texts = (texts[i % 3] for i in xrange(100000000))
 | 
						|
        for i, doc in enumerate(nlp.pipe(iter_texts, batch_size=50, n_threads=4)):
 | 
						|
            assert doc.is_parsed
 | 
						|
            if i == 100:
 | 
						|
                break
 | 
						|
 | 
						|
    +h(3, "examples-tokens-sentences") Get tokens and sentences
 | 
						|
 | 
						|
    +code.
 | 
						|
        token = doc[0]
 | 
						|
        sentence = next(doc.sents)
 | 
						|
        assert token is sentence[0]
 | 
						|
        assert sentence.text == 'Hello, world.'
 | 
						|
 | 
						|
    +h(3, "examples-integer-ids") Use integer IDs for any string
 | 
						|
 | 
						|
    +code.
 | 
						|
        hello_id = nlp.vocab.strings['Hello']
 | 
						|
        hello_str = nlp.vocab.strings[hello_id]
 | 
						|
 | 
						|
        assert token.orth  == hello_id  == 3125
 | 
						|
        assert token.orth_ == hello_str == 'Hello'
 | 
						|
 | 
						|
    +h(3, "examples-string-views-flags") Get and set string views and flags
 | 
						|
 | 
						|
    +code.
 | 
						|
        assert token.shape_ == 'Xxxxx'
 | 
						|
        for lexeme in nlp.vocab:
 | 
						|
            if lexeme.is_alpha:
 | 
						|
                lexeme.shape_ = 'W'
 | 
						|
            elif lexeme.is_digit:
 | 
						|
                lexeme.shape_ = 'D'
 | 
						|
            elif lexeme.is_punct:
 | 
						|
                lexeme.shape_ = 'P'
 | 
						|
            else:
 | 
						|
                lexeme.shape_ = 'M'
 | 
						|
        assert token.shape_ == 'W'
 | 
						|
 | 
						|
    +h(3, "examples-numpy-arrays") Export to numpy arrays
 | 
						|
 | 
						|
    +code.
 | 
						|
        from spacy.attrs import ORTH, LIKE_URL, IS_OOV
 | 
						|
 | 
						|
        attr_ids = [ORTH, LIKE_URL, IS_OOV]
 | 
						|
        doc_array = doc.to_array(attr_ids)
 | 
						|
        assert doc_array.shape == (len(doc), len(attr_ids))
 | 
						|
        assert doc[0].orth == doc_array[0, 0]
 | 
						|
        assert doc[1].orth == doc_array[1, 0]
 | 
						|
        assert doc[0].like_url == doc_array[0, 1]
 | 
						|
        assert list(doc_array[:, 1]) == [t.like_url for t in doc]
 | 
						|
 | 
						|
    +h(3, "examples-word-vectors") Word vectors
 | 
						|
 | 
						|
    +code.
 | 
						|
        doc = nlp("Apples and oranges are similar. Boots and hippos aren't.")
 | 
						|
 | 
						|
        apples = doc[0]
 | 
						|
        oranges = doc[2]
 | 
						|
        boots = doc[6]
 | 
						|
        hippos = doc[8]
 | 
						|
 | 
						|
        assert apples.similarity(oranges) > boots.similarity(hippos)
 | 
						|
 | 
						|
    +h(3, "examples-pos-tags") Part-of-speech tags
 | 
						|
 | 
						|
    +code.
 | 
						|
        from spacy.parts_of_speech import ADV
 | 
						|
 | 
						|
        def is_adverb(token):
 | 
						|
            return token.pos == spacy.parts_of_speech.ADV
 | 
						|
 | 
						|
        # These are data-specific, so no constants are provided. You have to look
 | 
						|
        # up the IDs from the StringStore.
 | 
						|
        NNS = nlp.vocab.strings['NNS']
 | 
						|
        NNPS = nlp.vocab.strings['NNPS']
 | 
						|
        def is_plural_noun(token):
 | 
						|
            return token.tag == NNS or token.tag == NNPS
 | 
						|
 | 
						|
        def print_coarse_pos(token):
 | 
						|
            print(token.pos_)
 | 
						|
 | 
						|
        def print_fine_pos(token):
 | 
						|
            print(token.tag_)
 | 
						|
 | 
						|
    +h(3, "examples-dependencies") Syntactic dependencies
 | 
						|
 | 
						|
    +code.
 | 
						|
        def dependency_labels_to_root(token):
 | 
						|
            '''Walk up the syntactic tree, collecting the arc labels.'''
 | 
						|
            dep_labels = []
 | 
						|
            while token.head is not token:
 | 
						|
                dep_labels.append(token.dep)
 | 
						|
                token = token.head
 | 
						|
            return dep_labels
 | 
						|
 | 
						|
    +h(3, "examples-entities") Named entities
 | 
						|
 | 
						|
    +code.
 | 
						|
        def iter_products(docs):
 | 
						|
            for doc in docs:
 | 
						|
                for ent in doc.ents:
 | 
						|
                    if ent.label_ == 'PRODUCT':
 | 
						|
                        yield ent
 | 
						|
 | 
						|
        def word_is_in_entity(word):
 | 
						|
            return word.ent_type != 0
 | 
						|
 | 
						|
        def count_parent_verb_by_person(docs):
 | 
						|
            counts = defaultdict(defaultdict(int))
 | 
						|
            for doc in docs:
 | 
						|
                for ent in doc.ents:
 | 
						|
                    if ent.label_ == 'PERSON' and ent.root.head.pos == VERB:
 | 
						|
                        counts[ent.orth_][ent.root.head.lemma_] += 1
 | 
						|
            return counts
 | 
						|
 | 
						|
    +h(3, "examples-inline") Calculate inline mark-up on original string
 | 
						|
 | 
						|
    +code.
 | 
						|
        def put_spans_around_tokens(doc, get_classes):
 | 
						|
            '''Given some function to compute class names, put each token in a
 | 
						|
            span element, with the appropriate classes computed.
 | 
						|
 | 
						|
            All whitespace is preserved, outside of the spans. (Yes, I know HTML
 | 
						|
            won't display it. But the point is no information is lost, so you can
 | 
						|
            calculate what you need, e.g. <br /> tags, <p> tags, etc.)
 | 
						|
            '''
 | 
						|
            output = []
 | 
						|
            template = '<span classes="{classes}">{word}</span>{space}'
 | 
						|
            for token in doc:
 | 
						|
                if token.is_space:
 | 
						|
                    output.append(token.orth_)
 | 
						|
                else:
 | 
						|
                    output.append(
 | 
						|
                      template.format(
 | 
						|
                        classes=' '.join(get_classes(token)),
 | 
						|
                        word=token.orth_,
 | 
						|
                        space=token.whitespace_))
 | 
						|
            string = ''.join(output)
 | 
						|
            string = string.replace('\n', '')
 | 
						|
            string = string.replace('\t', '    ')
 | 
						|
            return string
 | 
						|
 | 
						|
    +h(3, "examples-binary") Efficient binary serialization
 | 
						|
 | 
						|
    +code.
 | 
						|
        import spacy
 | 
						|
        from spacy.tokens.doc import Doc
 | 
						|
 | 
						|
        byte_string = doc.to_bytes()
 | 
						|
        open('moby_dick.bin', 'wb').write(byte_string)
 | 
						|
 | 
						|
        nlp = spacy.load('en')
 | 
						|
        for byte_string in Doc.read_bytes(open('moby_dick.bin', 'rb')):
 | 
						|
           doc = Doc(nlp.vocab)
 | 
						|
           doc.from_bytes(byte_string)
 |