mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-12 10:16:27 +03:00
293 lines
9.3 KiB
Cython
293 lines
9.3 KiB
Cython
# cython: infer_types=True
|
|
# cython: profile=True
|
|
# coding: utf8
|
|
from __future__ import unicode_literals
|
|
|
|
from thinc.api import chain, layerize, with_getitem
|
|
from thinc.neural import Model, Softmax
|
|
import numpy
|
|
cimport numpy as np
|
|
import cytoolz
|
|
import util
|
|
|
|
from thinc.api import add, layerize, chain, clone, concatenate
|
|
from thinc.neural import Model, Maxout, Softmax, Affine
|
|
from thinc.neural._classes.hash_embed import HashEmbed
|
|
from thinc.neural.util import to_categorical
|
|
|
|
from thinc.neural._classes.convolution import ExtractWindow
|
|
from thinc.neural._classes.resnet import Residual
|
|
from thinc.neural._classes.batchnorm import BatchNorm as BN
|
|
|
|
from .tokens.doc cimport Doc
|
|
from .syntax.parser cimport Parser as LinearParser
|
|
from .syntax.nn_parser cimport Parser as NeuralParser
|
|
from .syntax.parser import get_templates as get_feature_templates
|
|
from .syntax.beam_parser cimport BeamParser
|
|
from .syntax.ner cimport BiluoPushDown
|
|
from .syntax.arc_eager cimport ArcEager
|
|
from .tagger import Tagger
|
|
from .syntax.stateclass cimport StateClass
|
|
from .gold cimport GoldParse
|
|
from .morphology cimport Morphology
|
|
from .vocab cimport Vocab
|
|
|
|
from .attrs import ID, LOWER, PREFIX, SUFFIX, SHAPE, TAG, DEP, POS
|
|
from ._ml import Tok2Vec, flatten, get_col, doc2feats
|
|
from .parts_of_speech import X
|
|
|
|
|
|
class TokenVectorEncoder(object):
|
|
'''Assign position-sensitive vectors to tokens, using a CNN or RNN.'''
|
|
name = 'tok2vec'
|
|
|
|
@classmethod
|
|
def Model(cls, width=128, embed_size=5000, **cfg):
|
|
width = util.env_opt('token_vector_width', width)
|
|
embed_size = util.env_opt('embed_size', embed_size)
|
|
return Tok2Vec(width, embed_size, preprocess=None)
|
|
|
|
def __init__(self, vocab, model=True, **cfg):
|
|
self.vocab = vocab
|
|
self.doc2feats = doc2feats()
|
|
self.model = model
|
|
|
|
def __call__(self, docs, state=None):
|
|
if isinstance(docs, Doc):
|
|
docs = [docs]
|
|
tokvecs = self.predict(docs)
|
|
self.set_annotations(docs, tokvecs)
|
|
state = {} if state is None else state
|
|
state['tokvecs'] = tokvecs
|
|
return state
|
|
|
|
def pipe(self, stream, batch_size=128, n_threads=-1):
|
|
for batch in cytoolz.partition_all(batch_size, stream):
|
|
docs, states = zip(*batch)
|
|
tokvecs = self.predict(docs)
|
|
self.set_annotations(docs, tokvecs)
|
|
for state in states:
|
|
state['tokvecs'] = tokvecs
|
|
yield from zip(docs, states)
|
|
|
|
def predict(self, docs):
|
|
feats = self.doc2feats(docs)
|
|
tokvecs = self.model(feats)
|
|
return tokvecs
|
|
|
|
def set_annotations(self, docs, tokvecs):
|
|
start = 0
|
|
for doc in docs:
|
|
doc.tensor = tokvecs[start : start + len(doc)]
|
|
start += len(doc)
|
|
|
|
def update(self, docs, golds, state=None,
|
|
drop=0., sgd=None):
|
|
if isinstance(docs, Doc):
|
|
docs = [docs]
|
|
golds = [golds]
|
|
state = {} if state is None else state
|
|
feats = self.doc2feats(docs)
|
|
tokvecs, bp_tokvecs = self.model.begin_update(feats, drop=drop)
|
|
state['feats'] = feats
|
|
state['tokvecs'] = tokvecs
|
|
state['bp_tokvecs'] = bp_tokvecs
|
|
return state
|
|
|
|
def get_loss(self, docs, golds, scores):
|
|
raise NotImplementedError
|
|
|
|
def begin_training(self, gold_tuples, pipeline=None):
|
|
self.doc2feats = doc2feats()
|
|
if self.model is True:
|
|
self.model = self.Model()
|
|
|
|
def use_params(self, params):
|
|
with self.model.use_params(params):
|
|
yield
|
|
|
|
|
|
class NeuralTagger(object):
|
|
name = 'nn_tagger'
|
|
def __init__(self, vocab, model=True):
|
|
self.vocab = vocab
|
|
self.model = model
|
|
|
|
def __call__(self, doc, state=None):
|
|
assert state is not None
|
|
assert 'tokvecs' in state
|
|
tokvecs = state['tokvecs']
|
|
tags = self.predict(tokvecs)
|
|
self.set_annotations([doc], tags)
|
|
return state
|
|
|
|
def pipe(self, stream, batch_size=128, n_threads=-1):
|
|
for batch in cytoolz.partition_all(batch_size, stream):
|
|
docs, states = zip(*batch)
|
|
tag_ids = self.predict(states[0]['tokvecs'])
|
|
self.set_annotations(docs, tag_ids)
|
|
for state in states:
|
|
state['tag_ids'] = tag_ids
|
|
yield from zip(docs, states)
|
|
|
|
def predict(self, tokvecs):
|
|
scores = self.model(tokvecs)
|
|
guesses = scores.argmax(axis=1)
|
|
if not isinstance(guesses, numpy.ndarray):
|
|
guesses = guesses.get()
|
|
return guesses
|
|
|
|
def set_annotations(self, docs, batch_tag_ids):
|
|
if isinstance(docs, Doc):
|
|
docs = [docs]
|
|
cdef Doc doc
|
|
cdef int idx = 0
|
|
cdef int i, j, tag_id
|
|
cdef Vocab vocab = self.vocab
|
|
for i, doc in enumerate(docs):
|
|
doc_tag_ids = batch_tag_ids[idx:idx+len(doc)]
|
|
for j, tag_id in enumerate(doc_tag_ids):
|
|
vocab.morphology.assign_tag_id(&doc.c[j], tag_id)
|
|
idx += 1
|
|
|
|
def update(self, docs, golds, state=None, drop=0., sgd=None):
|
|
state = {} if state is None else state
|
|
|
|
tokvecs = state['tokvecs']
|
|
bp_tokvecs = state['bp_tokvecs']
|
|
if self.model.nI is None:
|
|
self.model.nI = tokvecs.shape[1]
|
|
|
|
tag_scores, bp_tag_scores = self.model.begin_update(tokvecs, drop=drop)
|
|
loss, d_tag_scores = self.get_loss(docs, golds, tag_scores)
|
|
|
|
d_tokvecs = bp_tag_scores(d_tag_scores, sgd=sgd)
|
|
|
|
bp_tokvecs(d_tokvecs, sgd=sgd)
|
|
|
|
state['tag_scores'] = tag_scores
|
|
state['tag_loss'] = loss
|
|
return state
|
|
|
|
def get_loss(self, docs, golds, scores):
|
|
tag_index = {tag: i for i, tag in enumerate(self.vocab.morphology.tag_names)}
|
|
|
|
cdef int idx = 0
|
|
correct = numpy.zeros((scores.shape[0],), dtype='i')
|
|
for gold in golds:
|
|
for tag in gold.tags:
|
|
correct[idx] = tag_index[tag]
|
|
idx += 1
|
|
correct = self.model.ops.xp.array(correct, dtype='i')
|
|
d_scores = scores - to_categorical(correct, nb_classes=scores.shape[1])
|
|
loss = (d_scores**2).sum()
|
|
d_scores = self.model.ops.asarray(d_scores, dtype='f')
|
|
return float(loss), d_scores
|
|
|
|
def begin_training(self, gold_tuples, pipeline=None):
|
|
orig_tag_map = dict(self.vocab.morphology.tag_map)
|
|
new_tag_map = {}
|
|
for raw_text, annots_brackets in gold_tuples:
|
|
for annots, brackets in annots_brackets:
|
|
ids, words, tags, heads, deps, ents = annots
|
|
for tag in tags:
|
|
if tag in orig_tag_map:
|
|
new_tag_map[tag] = orig_tag_map[tag]
|
|
else:
|
|
new_tag_map[tag] = {POS: X}
|
|
cdef Vocab vocab = self.vocab
|
|
vocab.morphology = Morphology(vocab.strings, new_tag_map,
|
|
vocab.morphology.lemmatizer)
|
|
self.model = Softmax(self.vocab.morphology.n_tags)
|
|
print("Tagging", self.model.nO, "tags")
|
|
|
|
def use_params(self, params):
|
|
with self.model.use_params(params):
|
|
yield
|
|
|
|
|
|
|
|
cdef class EntityRecognizer(LinearParser):
|
|
"""
|
|
Annotate named entities on Doc objects.
|
|
"""
|
|
TransitionSystem = BiluoPushDown
|
|
|
|
feature_templates = get_feature_templates('ner')
|
|
|
|
def add_label(self, label):
|
|
LinearParser.add_label(self, label)
|
|
if isinstance(label, basestring):
|
|
label = self.vocab.strings[label]
|
|
|
|
|
|
cdef class BeamEntityRecognizer(BeamParser):
|
|
"""
|
|
Annotate named entities on Doc objects.
|
|
"""
|
|
TransitionSystem = BiluoPushDown
|
|
|
|
feature_templates = get_feature_templates('ner')
|
|
|
|
def add_label(self, label):
|
|
LinearParser.add_label(self, label)
|
|
if isinstance(label, basestring):
|
|
label = self.vocab.strings[label]
|
|
|
|
|
|
cdef class DependencyParser(LinearParser):
|
|
TransitionSystem = ArcEager
|
|
feature_templates = get_feature_templates('basic')
|
|
|
|
def add_label(self, label):
|
|
LinearParser.add_label(self, label)
|
|
if isinstance(label, basestring):
|
|
label = self.vocab.strings[label]
|
|
|
|
|
|
cdef class NeuralDependencyParser(NeuralParser):
|
|
name = 'parser'
|
|
TransitionSystem = ArcEager
|
|
|
|
|
|
cdef class NeuralEntityRecognizer(NeuralParser):
|
|
name = 'entity'
|
|
TransitionSystem = BiluoPushDown
|
|
|
|
nr_feature = 6
|
|
|
|
def get_token_ids(self, states):
|
|
cdef StateClass state
|
|
cdef int n_tokens = 6
|
|
ids = numpy.zeros((len(states), n_tokens), dtype='i', order='c')
|
|
for i, state in enumerate(states):
|
|
ids[i, 0] = state.c.B(0)-1
|
|
ids[i, 1] = state.c.B(0)
|
|
ids[i, 2] = state.c.B(1)
|
|
ids[i, 3] = state.c.E(0)
|
|
ids[i, 4] = state.c.E(0)-1
|
|
ids[i, 5] = state.c.E(0)+1
|
|
for j in range(6):
|
|
if ids[i, j] >= state.c.length:
|
|
ids[i, j] = -1
|
|
if ids[i, j] != -1:
|
|
ids[i, j] += state.c.offset
|
|
return ids
|
|
|
|
|
|
|
|
|
|
cdef class BeamDependencyParser(BeamParser):
|
|
TransitionSystem = ArcEager
|
|
|
|
feature_templates = get_feature_templates('basic')
|
|
|
|
def add_label(self, label):
|
|
Parser.add_label(self, label)
|
|
if isinstance(label, basestring):
|
|
label = self.vocab.strings[label]
|
|
|
|
|
|
__all__ = ['Tagger', 'DependencyParser', 'EntityRecognizer', 'BeamDependencyParser',
|
|
'BeamEntityRecognizer', 'TokenVectorEnoder']
|