mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-10-31 16:07:41 +03:00 
			
		
		
		
	* version bump to 3.0.0a16 * rename "gold" folder to "training" * rename 'annotation_setter' to 'set_extra_annotations' * formatting
		
			
				
	
	
		
			248 lines
		
	
	
		
			7.3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			248 lines
		
	
	
		
			7.3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import pytest
 | |
| import numpy
 | |
| from spacy.training import Example
 | |
| from spacy.lang.en import English
 | |
| from spacy.pipeline import AttributeRuler
 | |
| from spacy import util, registry
 | |
| 
 | |
| from ..util import get_doc, make_tempdir
 | |
| 
 | |
| 
 | |
| @pytest.fixture
 | |
| def nlp():
 | |
|     return English()
 | |
| 
 | |
| 
 | |
| @pytest.fixture
 | |
| def pattern_dicts():
 | |
|     return [
 | |
|         {
 | |
|             "patterns": [[{"ORTH": "a"}], [{"ORTH": "irrelevant"}]],
 | |
|             "attrs": {"LEMMA": "the", "MORPH": "Case=Nom|Number=Plur"},
 | |
|         },
 | |
|         # one pattern sets the lemma
 | |
|         {"patterns": [[{"ORTH": "test"}]], "attrs": {"LEMMA": "cat"}},
 | |
|         # another pattern sets the morphology
 | |
|         {
 | |
|             "patterns": [[{"ORTH": "test"}]],
 | |
|             "attrs": {"MORPH": "Case=Nom|Number=Sing"},
 | |
|             "index": 0,
 | |
|         },
 | |
|     ]
 | |
| 
 | |
| 
 | |
| @registry.misc("attribute_ruler_patterns")
 | |
| def attribute_ruler_patterns():
 | |
|     return [
 | |
|         {
 | |
|             "patterns": [[{"ORTH": "a"}], [{"ORTH": "irrelevant"}]],
 | |
|             "attrs": {"LEMMA": "the", "MORPH": "Case=Nom|Number=Plur"},
 | |
|         },
 | |
|         # one pattern sets the lemma
 | |
|         {"patterns": [[{"ORTH": "test"}]], "attrs": {"LEMMA": "cat"}},
 | |
|         # another pattern sets the morphology
 | |
|         {
 | |
|             "patterns": [[{"ORTH": "test"}]],
 | |
|             "attrs": {"MORPH": "Case=Nom|Number=Sing"},
 | |
|             "index": 0,
 | |
|         },
 | |
|     ]
 | |
| 
 | |
| 
 | |
| @pytest.fixture
 | |
| def tag_map():
 | |
|     return {
 | |
|         ".": {"POS": "PUNCT", "PunctType": "peri"},
 | |
|         ",": {"POS": "PUNCT", "PunctType": "comm"},
 | |
|     }
 | |
| 
 | |
| 
 | |
| @pytest.fixture
 | |
| def morph_rules():
 | |
|     return {"DT": {"the": {"POS": "DET", "LEMMA": "a", "Case": "Nom"}}}
 | |
| 
 | |
| 
 | |
| def test_attributeruler_init(nlp, pattern_dicts):
 | |
|     a = nlp.add_pipe("attribute_ruler")
 | |
|     for p in pattern_dicts:
 | |
|         a.add(**p)
 | |
| 
 | |
|     doc = nlp("This is a test.")
 | |
|     assert doc[2].lemma_ == "the"
 | |
|     assert doc[2].morph_ == "Case=Nom|Number=Plur"
 | |
|     assert doc[3].lemma_ == "cat"
 | |
|     assert doc[3].morph_ == "Case=Nom|Number=Sing"
 | |
| 
 | |
| 
 | |
| def test_attributeruler_init_patterns(nlp, pattern_dicts):
 | |
|     # initialize with patterns
 | |
|     nlp.add_pipe("attribute_ruler", config={"pattern_dicts": pattern_dicts})
 | |
|     doc = nlp("This is a test.")
 | |
|     assert doc[2].lemma_ == "the"
 | |
|     assert doc[2].morph_ == "Case=Nom|Number=Plur"
 | |
|     assert doc[3].lemma_ == "cat"
 | |
|     assert doc[3].morph_ == "Case=Nom|Number=Sing"
 | |
|     nlp.remove_pipe("attribute_ruler")
 | |
|     # initialize with patterns from asset
 | |
|     nlp.add_pipe(
 | |
|         "attribute_ruler",
 | |
|         config={"pattern_dicts": {"@misc": "attribute_ruler_patterns"}},
 | |
|     )
 | |
|     doc = nlp("This is a test.")
 | |
|     assert doc[2].lemma_ == "the"
 | |
|     assert doc[2].morph_ == "Case=Nom|Number=Plur"
 | |
|     assert doc[3].lemma_ == "cat"
 | |
|     assert doc[3].morph_ == "Case=Nom|Number=Sing"
 | |
| 
 | |
| 
 | |
| def test_attributeruler_score(nlp, pattern_dicts):
 | |
|     # initialize with patterns
 | |
|     nlp.add_pipe("attribute_ruler", config={"pattern_dicts": pattern_dicts})
 | |
|     doc = nlp("This is a test.")
 | |
|     assert doc[2].lemma_ == "the"
 | |
|     assert doc[2].morph_ == "Case=Nom|Number=Plur"
 | |
|     assert doc[3].lemma_ == "cat"
 | |
|     assert doc[3].morph_ == "Case=Nom|Number=Sing"
 | |
| 
 | |
|     dev_examples = [
 | |
|         Example.from_dict(
 | |
|             nlp.make_doc("This is a test."), {"lemmas": ["this", "is", "a", "cat", "."]}
 | |
|         )
 | |
|     ]
 | |
|     scores = nlp.evaluate(dev_examples)
 | |
|     # "cat" is the only correct lemma
 | |
|     assert scores["lemma_acc"] == pytest.approx(0.2)
 | |
|     # the empty morphs are correct
 | |
|     assert scores["morph_acc"] == pytest.approx(0.6)
 | |
| 
 | |
| 
 | |
| def test_attributeruler_rule_order(nlp):
 | |
|     a = AttributeRuler(nlp.vocab)
 | |
|     patterns = [
 | |
|         {"patterns": [[{"TAG": "VBZ"}]], "attrs": {"POS": "VERB"}},
 | |
|         {"patterns": [[{"TAG": "VBZ"}]], "attrs": {"POS": "NOUN"}},
 | |
|     ]
 | |
|     a.add_patterns(patterns)
 | |
|     doc = get_doc(
 | |
|         nlp.vocab,
 | |
|         words=["This", "is", "a", "test", "."],
 | |
|         tags=["DT", "VBZ", "DT", "NN", "."],
 | |
|     )
 | |
|     doc = a(doc)
 | |
|     assert doc[1].pos_ == "NOUN"
 | |
| 
 | |
| 
 | |
| def test_attributeruler_tag_map(nlp, tag_map):
 | |
|     a = AttributeRuler(nlp.vocab)
 | |
|     a.load_from_tag_map(tag_map)
 | |
|     doc = get_doc(
 | |
|         nlp.vocab,
 | |
|         words=["This", "is", "a", "test", "."],
 | |
|         tags=["DT", "VBZ", "DT", "NN", "."],
 | |
|     )
 | |
|     doc = a(doc)
 | |
| 
 | |
|     for i in range(len(doc)):
 | |
|         if i == 4:
 | |
|             assert doc[i].pos_ == "PUNCT"
 | |
|             assert doc[i].morph_ == "PunctType=peri"
 | |
|         else:
 | |
|             assert doc[i].pos_ == ""
 | |
|             assert doc[i].morph_ == ""
 | |
| 
 | |
| 
 | |
| def test_attributeruler_morph_rules(nlp, morph_rules):
 | |
|     a = AttributeRuler(nlp.vocab)
 | |
|     a.load_from_morph_rules(morph_rules)
 | |
|     doc = get_doc(
 | |
|         nlp.vocab,
 | |
|         words=["This", "is", "the", "test", "."],
 | |
|         tags=["DT", "VBZ", "DT", "NN", "."],
 | |
|     )
 | |
|     doc = a(doc)
 | |
| 
 | |
|     for i in range(len(doc)):
 | |
|         if i != 2:
 | |
|             assert doc[i].pos_ == ""
 | |
|             assert doc[i].morph_ == ""
 | |
|         else:
 | |
|             assert doc[2].pos_ == "DET"
 | |
|             assert doc[2].lemma_ == "a"
 | |
|             assert doc[2].morph_ == "Case=Nom"
 | |
| 
 | |
| 
 | |
| def test_attributeruler_indices(nlp):
 | |
|     a = nlp.add_pipe("attribute_ruler")
 | |
|     a.add(
 | |
|         [[{"ORTH": "a"}, {"ORTH": "test"}]],
 | |
|         {"LEMMA": "the", "MORPH": "Case=Nom|Number=Plur"},
 | |
|         index=0,
 | |
|     )
 | |
|     a.add(
 | |
|         [[{"ORTH": "This"}, {"ORTH": "is"}]],
 | |
|         {"LEMMA": "was", "MORPH": "Case=Nom|Number=Sing"},
 | |
|         index=1,
 | |
|     )
 | |
|     a.add([[{"ORTH": "a"}, {"ORTH": "test"}]], {"LEMMA": "cat"}, index=-1)
 | |
| 
 | |
|     text = "This is a test."
 | |
|     doc = nlp(text)
 | |
| 
 | |
|     for i in range(len(doc)):
 | |
|         if i == 1:
 | |
|             assert doc[i].lemma_ == "was"
 | |
|             assert doc[i].morph_ == "Case=Nom|Number=Sing"
 | |
|         elif i == 2:
 | |
|             assert doc[i].lemma_ == "the"
 | |
|             assert doc[i].morph_ == "Case=Nom|Number=Plur"
 | |
|         elif i == 3:
 | |
|             assert doc[i].lemma_ == "cat"
 | |
|         else:
 | |
|             assert doc[i].morph_ == ""
 | |
| 
 | |
|     # raises an error when trying to modify a token outside of the match
 | |
|     a.add([[{"ORTH": "a"}, {"ORTH": "test"}]], {"LEMMA": "cat"}, index=2)
 | |
|     with pytest.raises(ValueError):
 | |
|         doc = nlp(text)
 | |
| 
 | |
|     # raises an error when trying to modify a token outside of the match
 | |
|     a.add([[{"ORTH": "a"}, {"ORTH": "test"}]], {"LEMMA": "cat"}, index=10)
 | |
|     with pytest.raises(ValueError):
 | |
|         doc = nlp(text)
 | |
| 
 | |
| 
 | |
| def test_attributeruler_patterns_prop(nlp, pattern_dicts):
 | |
|     a = nlp.add_pipe("attribute_ruler")
 | |
|     a.add_patterns(pattern_dicts)
 | |
| 
 | |
|     for p1, p2 in zip(pattern_dicts, a.patterns):
 | |
|         assert p1["patterns"] == p2["patterns"]
 | |
|         assert p1["attrs"] == p2["attrs"]
 | |
|         if p1.get("index"):
 | |
|             assert p1["index"] == p2["index"]
 | |
| 
 | |
| 
 | |
| def test_attributeruler_serialize(nlp, pattern_dicts):
 | |
|     a = nlp.add_pipe("attribute_ruler")
 | |
|     a.add_patterns(pattern_dicts)
 | |
| 
 | |
|     text = "This is a test."
 | |
|     attrs = ["ORTH", "LEMMA", "MORPH"]
 | |
|     doc = nlp(text)
 | |
| 
 | |
|     # bytes roundtrip
 | |
|     a_reloaded = AttributeRuler(nlp.vocab).from_bytes(a.to_bytes())
 | |
|     assert a.to_bytes() == a_reloaded.to_bytes()
 | |
|     doc1 = a_reloaded(nlp.make_doc(text))
 | |
|     numpy.array_equal(doc.to_array(attrs), doc1.to_array(attrs))
 | |
|     assert a.patterns == a_reloaded.patterns
 | |
| 
 | |
|     # disk roundtrip
 | |
|     with make_tempdir() as tmp_dir:
 | |
|         nlp.to_disk(tmp_dir)
 | |
|         nlp2 = util.load_model_from_path(tmp_dir)
 | |
|         doc2 = nlp2(text)
 | |
|         assert nlp2.get_pipe("attribute_ruler").to_bytes() == a.to_bytes()
 | |
|         assert numpy.array_equal(doc.to_array(attrs), doc2.to_array(attrs))
 | |
|         assert a.patterns == nlp2.get_pipe("attribute_ruler").patterns
 |