spaCy/spacy/pipeline/ner.pyx
Matthew Honnibal 8656a08777
Add beam_parser and beam_ner components for v3 (#6369)
* Get basic beam tests working

* Get basic beam tests working

* Compile _beam_utils

* Remove prints

* Test beam density

* Beam parser seems to train

* Draft beam NER

* Upd beam

* Add hypothesis as dev dependency

* Implement missing is-gold-parse method

* Implement early update

* Fix state hashing

* Fix test

* Fix test

* Default to non-beam in parser constructor

* Improve oracle for beam

* Start refactoring beam

* Update test

* Refactor beam

* Update nn

* Refactor beam and weight by cost

* Update ner beam settings

* Update test

* Add __init__.pxd

* Upd test

* Fix test

* Upd test

* Fix test

* Remove ring buffer history from StateC

* WIP change arc-eager transitions

* Add state tests

* Support ternary sent start values

* Fix arc eager

* Fix NER

* Pass oracle cut size for beam

* Fix ner test

* Fix beam

* Improve StateC.clone

* Improve StateClass.borrow

* Work directly with StateC, not StateClass

* Remove print statements

* Fix state copy

* Improve state class

* Refactor parser oracles

* Fix arc eager oracle

* Fix arc eager oracle

* Use a vector to implement the stack

* Refactor state data structure

* Fix alignment of sent start

* Add get_aligned_sent_starts method

* Add test for ae oracle when bad sentence starts

* Fix sentence segment handling

* Avoid Reduce that inserts illegal sentence

* Update preset SBD test

* Fix test

* Remove prints

* Fix sent starts in Example

* Improve python API of StateClass

* Tweak comments and debug output of arc eager

* Upd test

* Fix state test

* Fix state test
2020-12-13 09:08:32 +08:00

199 lines
7.5 KiB
Cython

# cython: infer_types=True, profile=True, binding=True
from typing import Optional, Iterable
from thinc.api import Model, Config
from .transition_parser cimport Parser
from ._parser_internals.ner cimport BiluoPushDown
from ..language import Language
from ..scorer import get_ner_prf, PRFScore
from ..training import validate_examples
default_model_config = """
[model]
@architectures = "spacy.TransitionBasedParser.v1"
state_type = "ner"
extra_state_tokens = false
hidden_width = 64
maxout_pieces = 2
[model.tok2vec]
@architectures = "spacy.HashEmbedCNN.v1"
pretrained_vectors = null
width = 96
depth = 4
embed_size = 2000
window_size = 1
maxout_pieces = 3
subword_features = true
"""
DEFAULT_NER_MODEL = Config().from_str(default_model_config)["model"]
@Language.factory(
"ner",
assigns=["doc.ents", "token.ent_iob", "token.ent_type"],
default_config={
"moves": None,
"update_with_oracle_cut_size": 100,
"model": DEFAULT_NER_MODEL,
},
default_score_weights={"ents_f": 1.0, "ents_p": 0.0, "ents_r": 0.0, "ents_per_type": None},
)
def make_ner(
nlp: Language,
name: str,
model: Model,
moves: Optional[list],
update_with_oracle_cut_size: int,
):
"""Create a transition-based EntityRecognizer component. The entity recognizer
identifies non-overlapping labelled spans of tokens.
The transition-based algorithm used encodes certain assumptions that are
effective for "traditional" named entity recognition tasks, but may not be
a good fit for every span identification problem. Specifically, the loss
function optimizes for whole entity accuracy, so if your inter-annotator
agreement on boundary tokens is low, the component will likely perform poorly
on your problem. The transition-based algorithm also assumes that the most
decisive information about your entities will be close to their initial tokens.
If your entities are long and characterised by tokens in their middle, the
component will likely do poorly on your task.
model (Model): The model for the transition-based parser. The model needs
to have a specific substructure of named components --- see the
spacy.ml.tb_framework.TransitionModel for details.
moves (list[str]): A list of transition names. Inferred from the data if not
provided.
update_with_oracle_cut_size (int):
During training, cut long sequences into shorter segments by creating
intermediate states based on the gold-standard history. The model is
not very sensitive to this parameter, so you usually won't need to change
it. 100 is a good default.
"""
return EntityRecognizer(
nlp.vocab,
model,
name,
moves=moves,
update_with_oracle_cut_size=update_with_oracle_cut_size,
multitasks=[],
min_action_freq=1,
learn_tokens=False,
beam_width=1,
beam_density=0.0,
beam_update_prob=0.0,
)
@Language.factory(
"beam_ner",
assigns=["doc.ents", "token.ent_iob", "token.ent_type"],
default_config={
"moves": None,
"update_with_oracle_cut_size": 100,
"model": DEFAULT_NER_MODEL,
"beam_density": 0.01,
"beam_update_prob": 0.5,
"beam_width": 32
},
default_score_weights={"ents_f": 1.0, "ents_p": 0.0, "ents_r": 0.0, "ents_per_type": None},
)
def make_beam_ner(
nlp: Language,
name: str,
model: Model,
moves: Optional[list],
update_with_oracle_cut_size: int,
beam_width: int,
beam_density: float,
beam_update_prob: float,
):
"""Create a transition-based EntityRecognizer component that uses beam-search.
The entity recognizer identifies non-overlapping labelled spans of tokens.
The transition-based algorithm used encodes certain assumptions that are
effective for "traditional" named entity recognition tasks, but may not be
a good fit for every span identification problem. Specifically, the loss
function optimizes for whole entity accuracy, so if your inter-annotator
agreement on boundary tokens is low, the component will likely perform poorly
on your problem. The transition-based algorithm also assumes that the most
decisive information about your entities will be close to their initial tokens.
If your entities are long and characterised by tokens in their middle, the
component will likely do poorly on your task.
model (Model): The model for the transition-based parser. The model needs
to have a specific substructure of named components --- see the
spacy.ml.tb_framework.TransitionModel for details.
moves (list[str]): A list of transition names. Inferred from the data if not
provided.
update_with_oracle_cut_size (int):
During training, cut long sequences into shorter segments by creating
intermediate states based on the gold-standard history. The model is
not very sensitive to this parameter, so you usually won't need to change
it. 100 is a good default.
beam_width (int): The number of candidate analyses to maintain.
beam_density (float): The minimum ratio between the scores of the first and
last candidates in the beam. This allows the parser to avoid exploring
candidates that are too far behind. This is mostly intended to improve
efficiency, but it can also improve accuracy as deeper search is not
always better.
beam_update_prob (float): The chance of making a beam update, instead of a
greedy update. Greedy updates are an approximation for the beam updates,
and are faster to compute.
"""
return EntityRecognizer(
nlp.vocab,
model,
name,
moves=moves,
update_with_oracle_cut_size=update_with_oracle_cut_size,
multitasks=[],
min_action_freq=1,
learn_tokens=False,
beam_width=beam_width,
beam_density=beam_density,
beam_update_prob=beam_update_prob,
)
cdef class EntityRecognizer(Parser):
"""Pipeline component for named entity recognition.
DOCS: https://nightly.spacy.io/api/entityrecognizer
"""
TransitionSystem = BiluoPushDown
def add_multitask_objective(self, mt_component):
"""Register another component as a multi-task objective. Experimental."""
self._multitasks.append(mt_component)
def init_multitask_objectives(self, get_examples, nlp=None, **cfg):
"""Setup multi-task objective components. Experimental and internal."""
# TODO: transfer self.model.get_ref("tok2vec") to the multitask's model ?
for labeller in self._multitasks:
labeller.model.set_dim("nO", len(self.labels))
if labeller.model.has_ref("output_layer"):
labeller.model.get_ref("output_layer").set_dim("nO", len(self.labels))
labeller.initialize(get_examples, nlp=nlp)
@property
def labels(self):
# Get the labels from the model by looking at the available moves, e.g.
# B-PERSON, I-PERSON, L-PERSON, U-PERSON
labels = set(move.split("-")[1] for move in self.move_names
if move[0] in ("B", "I", "L", "U"))
return tuple(sorted(labels))
def score(self, examples, **kwargs):
"""Score a batch of examples.
examples (Iterable[Example]): The examples to score.
RETURNS (Dict[str, Any]): The NER precision, recall and f-scores.
DOCS: https://nightly.spacy.io/api/entityrecognizer#score
"""
validate_examples(examples, "EntityRecognizer.score")
return get_ner_prf(examples)