mirror of
https://github.com/explosion/spaCy.git
synced 2024-12-27 10:26:35 +03:00
a6830d60e8
* Changes to wiki_entity_linker * No more f-strings * Make some requested changes * Add back option to get descriptions from wd not wp * Fix logs * Address comments and clean evaluation * Remove type hints * Refactor evaluation, add back metrics by label * Address comments * Log training performance as well as dev
396 lines
14 KiB
Python
396 lines
14 KiB
Python
# coding: utf-8
|
|
from __future__ import unicode_literals
|
|
|
|
import logging
|
|
import random
|
|
import re
|
|
import bz2
|
|
import json
|
|
|
|
from functools import partial
|
|
|
|
from spacy.gold import GoldParse
|
|
from bin.wiki_entity_linking import kb_creator
|
|
|
|
"""
|
|
Process Wikipedia interlinks to generate a training dataset for the EL algorithm.
|
|
Gold-standard entities are stored in one file in standoff format (by character offset).
|
|
"""
|
|
|
|
ENTITY_FILE = "gold_entities.csv"
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
def create_training_examples_and_descriptions(wikipedia_input,
|
|
entity_def_input,
|
|
description_output,
|
|
training_output,
|
|
parse_descriptions,
|
|
limit=None):
|
|
wp_to_id = kb_creator.get_entity_to_id(entity_def_input)
|
|
_process_wikipedia_texts(wikipedia_input,
|
|
wp_to_id,
|
|
description_output,
|
|
training_output,
|
|
parse_descriptions,
|
|
limit)
|
|
|
|
|
|
def _process_wikipedia_texts(wikipedia_input,
|
|
wp_to_id,
|
|
output,
|
|
training_output,
|
|
parse_descriptions,
|
|
limit=None):
|
|
"""
|
|
Read the XML wikipedia data to parse out training data:
|
|
raw text data + positive instances
|
|
"""
|
|
title_regex = re.compile(r"(?<=<title>).*(?=</title>)")
|
|
id_regex = re.compile(r"(?<=<id>)\d*(?=</id>)")
|
|
|
|
read_ids = set()
|
|
|
|
with output.open("a", encoding="utf8") as descr_file, training_output.open("w", encoding="utf8") as entity_file:
|
|
if parse_descriptions:
|
|
_write_training_description(descr_file, "WD_id", "description")
|
|
with bz2.open(wikipedia_input, mode="rb") as file:
|
|
article_count = 0
|
|
article_text = ""
|
|
article_title = None
|
|
article_id = None
|
|
reading_text = False
|
|
reading_revision = False
|
|
|
|
logger.info("Processed {} articles".format(article_count))
|
|
|
|
for line in file:
|
|
clean_line = line.strip().decode("utf-8")
|
|
|
|
if clean_line == "<revision>":
|
|
reading_revision = True
|
|
elif clean_line == "</revision>":
|
|
reading_revision = False
|
|
|
|
# Start reading new page
|
|
if clean_line == "<page>":
|
|
article_text = ""
|
|
article_title = None
|
|
article_id = None
|
|
# finished reading this page
|
|
elif clean_line == "</page>":
|
|
if article_id:
|
|
clean_text, entities = _process_wp_text(
|
|
article_title,
|
|
article_text,
|
|
wp_to_id
|
|
)
|
|
if clean_text is not None and entities is not None:
|
|
_write_training_entities(entity_file,
|
|
article_id,
|
|
clean_text,
|
|
entities)
|
|
|
|
if article_title in wp_to_id and parse_descriptions:
|
|
description = " ".join(clean_text[:1000].split(" ")[:-1])
|
|
_write_training_description(
|
|
descr_file,
|
|
wp_to_id[article_title],
|
|
description
|
|
)
|
|
article_count += 1
|
|
if article_count % 10000 == 0:
|
|
logger.info("Processed {} articles".format(article_count))
|
|
if limit and article_count >= limit:
|
|
break
|
|
article_text = ""
|
|
article_title = None
|
|
article_id = None
|
|
reading_text = False
|
|
reading_revision = False
|
|
|
|
# start reading text within a page
|
|
if "<text" in clean_line:
|
|
reading_text = True
|
|
|
|
if reading_text:
|
|
article_text += " " + clean_line
|
|
|
|
# stop reading text within a page (we assume a new page doesn't start on the same line)
|
|
if "</text" in clean_line:
|
|
reading_text = False
|
|
|
|
# read the ID of this article (outside the revision portion of the document)
|
|
if not reading_revision:
|
|
ids = id_regex.search(clean_line)
|
|
if ids:
|
|
article_id = ids[0]
|
|
if article_id in read_ids:
|
|
logger.info(
|
|
"Found duplicate article ID", article_id, clean_line
|
|
) # This should never happen ...
|
|
read_ids.add(article_id)
|
|
|
|
# read the title of this article (outside the revision portion of the document)
|
|
if not reading_revision:
|
|
titles = title_regex.search(clean_line)
|
|
if titles:
|
|
article_title = titles[0].strip()
|
|
logger.info("Finished. Processed {} articles".format(article_count))
|
|
|
|
|
|
text_regex = re.compile(r"(?<=<text xml:space=\"preserve\">).*(?=</text)")
|
|
info_regex = re.compile(r"{[^{]*?}")
|
|
htlm_regex = re.compile(r"<!--[^-]*-->")
|
|
category_regex = re.compile(r"\[\[Category:[^\[]*]]")
|
|
file_regex = re.compile(r"\[\[File:[^[\]]+]]")
|
|
ref_regex = re.compile(r"<ref.*?>") # non-greedy
|
|
ref_2_regex = re.compile(r"</ref.*?>") # non-greedy
|
|
|
|
|
|
def _process_wp_text(article_title, article_text, wp_to_id):
|
|
# ignore meta Wikipedia pages
|
|
if (
|
|
article_title.startswith("Wikipedia:") or
|
|
article_title.startswith("Kategori:")
|
|
):
|
|
return None, None
|
|
|
|
# remove the text tags
|
|
text_search = text_regex.search(article_text)
|
|
if text_search is None:
|
|
return None, None
|
|
text = text_search.group(0)
|
|
|
|
# stop processing if this is a redirect page
|
|
if text.startswith("#REDIRECT"):
|
|
return None, None
|
|
|
|
# get the raw text without markup etc, keeping only interwiki links
|
|
clean_text, entities = _remove_links(_get_clean_wp_text(text), wp_to_id)
|
|
return clean_text, entities
|
|
|
|
|
|
def _get_clean_wp_text(article_text):
|
|
clean_text = article_text.strip()
|
|
|
|
# remove bolding & italic markup
|
|
clean_text = clean_text.replace("'''", "")
|
|
clean_text = clean_text.replace("''", "")
|
|
|
|
# remove nested {{info}} statements by removing the inner/smallest ones first and iterating
|
|
try_again = True
|
|
previous_length = len(clean_text)
|
|
while try_again:
|
|
clean_text = info_regex.sub(
|
|
"", clean_text
|
|
) # non-greedy match excluding a nested {
|
|
if len(clean_text) < previous_length:
|
|
try_again = True
|
|
else:
|
|
try_again = False
|
|
previous_length = len(clean_text)
|
|
|
|
# remove HTML comments
|
|
clean_text = htlm_regex.sub("", clean_text)
|
|
|
|
# remove Category and File statements
|
|
clean_text = category_regex.sub("", clean_text)
|
|
clean_text = file_regex.sub("", clean_text)
|
|
|
|
# remove multiple =
|
|
while "==" in clean_text:
|
|
clean_text = clean_text.replace("==", "=")
|
|
|
|
clean_text = clean_text.replace(". =", ".")
|
|
clean_text = clean_text.replace(" = ", ". ")
|
|
clean_text = clean_text.replace("= ", ".")
|
|
clean_text = clean_text.replace(" =", "")
|
|
|
|
# remove refs (non-greedy match)
|
|
clean_text = ref_regex.sub("", clean_text)
|
|
clean_text = ref_2_regex.sub("", clean_text)
|
|
|
|
# remove additional wikiformatting
|
|
clean_text = re.sub(r"<blockquote>", "", clean_text)
|
|
clean_text = re.sub(r"</blockquote>", "", clean_text)
|
|
|
|
# change special characters back to normal ones
|
|
clean_text = clean_text.replace(r"<", "<")
|
|
clean_text = clean_text.replace(r">", ">")
|
|
clean_text = clean_text.replace(r""", '"')
|
|
clean_text = clean_text.replace(r"&nbsp;", " ")
|
|
clean_text = clean_text.replace(r"&", "&")
|
|
|
|
# remove multiple spaces
|
|
while " " in clean_text:
|
|
clean_text = clean_text.replace(" ", " ")
|
|
|
|
return clean_text.strip()
|
|
|
|
|
|
def _remove_links(clean_text, wp_to_id):
|
|
# read the text char by char to get the right offsets for the interwiki links
|
|
entities = []
|
|
final_text = ""
|
|
open_read = 0
|
|
reading_text = True
|
|
reading_entity = False
|
|
reading_mention = False
|
|
reading_special_case = False
|
|
entity_buffer = ""
|
|
mention_buffer = ""
|
|
for index, letter in enumerate(clean_text):
|
|
if letter == "[":
|
|
open_read += 1
|
|
elif letter == "]":
|
|
open_read -= 1
|
|
elif letter == "|":
|
|
if reading_text:
|
|
final_text += letter
|
|
# switch from reading entity to mention in the [[entity|mention]] pattern
|
|
elif reading_entity:
|
|
reading_text = False
|
|
reading_entity = False
|
|
reading_mention = True
|
|
else:
|
|
reading_special_case = True
|
|
else:
|
|
if reading_entity:
|
|
entity_buffer += letter
|
|
elif reading_mention:
|
|
mention_buffer += letter
|
|
elif reading_text:
|
|
final_text += letter
|
|
else:
|
|
raise ValueError("Not sure at point", clean_text[index - 2: index + 2])
|
|
|
|
if open_read > 2:
|
|
reading_special_case = True
|
|
|
|
if open_read == 2 and reading_text:
|
|
reading_text = False
|
|
reading_entity = True
|
|
reading_mention = False
|
|
|
|
# we just finished reading an entity
|
|
if open_read == 0 and not reading_text:
|
|
if "#" in entity_buffer or entity_buffer.startswith(":"):
|
|
reading_special_case = True
|
|
# Ignore cases with nested structures like File: handles etc
|
|
if not reading_special_case:
|
|
if not mention_buffer:
|
|
mention_buffer = entity_buffer
|
|
start = len(final_text)
|
|
end = start + len(mention_buffer)
|
|
qid = wp_to_id.get(entity_buffer, None)
|
|
if qid:
|
|
entities.append((mention_buffer, qid, start, end))
|
|
final_text += mention_buffer
|
|
|
|
entity_buffer = ""
|
|
mention_buffer = ""
|
|
|
|
reading_text = True
|
|
reading_entity = False
|
|
reading_mention = False
|
|
reading_special_case = False
|
|
return final_text, entities
|
|
|
|
|
|
def _write_training_description(outputfile, qid, description):
|
|
if description is not None:
|
|
line = str(qid) + "|" + description + "\n"
|
|
outputfile.write(line)
|
|
|
|
|
|
def _write_training_entities(outputfile, article_id, clean_text, entities):
|
|
entities_data = [{"alias": ent[0], "entity": ent[1], "start": ent[2], "end": ent[3]} for ent in entities]
|
|
line = json.dumps(
|
|
{
|
|
"article_id": article_id,
|
|
"clean_text": clean_text,
|
|
"entities": entities_data
|
|
},
|
|
ensure_ascii=False) + "\n"
|
|
outputfile.write(line)
|
|
|
|
|
|
def read_training(nlp, entity_file_path, dev, limit, kb):
|
|
""" This method provides training examples that correspond to the entity annotations found by the nlp object.
|
|
For training,, it will include negative training examples by using the candidate generator,
|
|
and it will only keep positive training examples that can be found by using the candidate generator.
|
|
For testing, it will include all positive examples only."""
|
|
|
|
from tqdm import tqdm
|
|
data = []
|
|
num_entities = 0
|
|
get_gold_parse = partial(_get_gold_parse, dev=dev, kb=kb)
|
|
|
|
logger.info("Reading {} data with limit {}".format('dev' if dev else 'train', limit))
|
|
with entity_file_path.open("r", encoding="utf8") as file:
|
|
with tqdm(total=limit, leave=False) as pbar:
|
|
for i, line in enumerate(file):
|
|
example = json.loads(line)
|
|
article_id = example["article_id"]
|
|
clean_text = example["clean_text"]
|
|
entities = example["entities"]
|
|
|
|
if dev != is_dev(article_id) or len(clean_text) >= 30000:
|
|
continue
|
|
|
|
doc = nlp(clean_text)
|
|
gold = get_gold_parse(doc, entities)
|
|
if gold and len(gold.links) > 0:
|
|
data.append((doc, gold))
|
|
num_entities += len(gold.links)
|
|
pbar.update(len(gold.links))
|
|
if limit and num_entities >= limit:
|
|
break
|
|
logger.info("Read {} entities in {} articles".format(num_entities, len(data)))
|
|
return data
|
|
|
|
|
|
def _get_gold_parse(doc, entities, dev, kb):
|
|
gold_entities = {}
|
|
tagged_ent_positions = set(
|
|
[(ent.start_char, ent.end_char) for ent in doc.ents]
|
|
)
|
|
|
|
for entity in entities:
|
|
entity_id = entity["entity"]
|
|
alias = entity["alias"]
|
|
start = entity["start"]
|
|
end = entity["end"]
|
|
|
|
candidates = kb.get_candidates(alias)
|
|
candidate_ids = [
|
|
c.entity_ for c in candidates
|
|
]
|
|
|
|
should_add_ent = (
|
|
dev or
|
|
(
|
|
(start, end) in tagged_ent_positions and
|
|
entity_id in candidate_ids and
|
|
len(candidates) > 1
|
|
)
|
|
)
|
|
|
|
if should_add_ent:
|
|
value_by_id = {entity_id: 1.0}
|
|
if not dev:
|
|
random.shuffle(candidate_ids)
|
|
value_by_id.update({
|
|
kb_id: 0.0
|
|
for kb_id in candidate_ids
|
|
if kb_id != entity_id
|
|
})
|
|
gold_entities[(start, end)] = value_by_id
|
|
|
|
return GoldParse(doc, links=gold_entities)
|
|
|
|
|
|
def is_dev(article_id):
|
|
return article_id.endswith("3")
|